Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(4): 112393, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058409

RESUMO

Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Humanos , Animais , Feminino , Dieta Ocidental/efeitos adversos , Primatas , Imunidade Inata
2.
Cell Rep ; 40(8): 111255, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001973

RESUMO

Persistent endoplasmic reticulum (ER) stress induces islet inflammation and ß cell loss. How islet inflammation contributes to ß cell loss remains uncertain. We have reported previously that chronic overnutrition-induced ER stress in ß cells causes Ripk3-mediated islet inflammation, macrophage recruitment, and a reduction of ß cell numbers in a zebrafish model. We show here that ß cell loss results from the intricate communications among ß cells, macrophages, and neutrophils. Macrophage-derived Tnfa induces cxcl8a in ß cells. Cxcl8a, in turn, attracts neutrophils to macrophage-contacted "hotspots" where ß cell loss occurs. We also show potentiation of chemokine expression in stressed mammalian ß cells by macrophage-derived TNFA. In Akita and db/db mice, there is an increase in CXCL15-positive ß cells and intra-islet neutrophils. Blocking neutrophil recruitment in Akita mice preserves ß cell mass and slows diabetes progression. These results reveal an important role of neutrophils in persistent ER stress-induced ß cell loss.


Assuntos
Células Secretoras de Insulina , Neutrófilos , Animais , Apoptose , Estresse do Retículo Endoplasmático , Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Macrófagos/metabolismo , Mamíferos , Camundongos , Peixe-Zebra
3.
J Pathol ; 254(1): 31-45, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33527355

RESUMO

Maturity-onset diabetes of the young type 5 (MODY5) is due to heterozygous mutations or deletion of HNF1B. No mouse models are currently available to recapitulate the human MODY5 disease. Here, we investigate the pancreatic phenotype of a unique MODY5 mouse model generated by heterozygous insertion of a human HNF1B splicing mutation at the intron-2 splice donor site in the mouse genome. This Hnf1bsp2/+ model generated with targeted mutation of Hnf1b mimicking the c.544+1G>T (T) mutation identified in humans, results in alternative transcripts and a 38% decrease of native Hnf1b transcript levels. As a clinical feature of MODY5 patients, the hypomorphic mouse model Hnf1bsp2/+ displays glucose intolerance. Whereas Hnf1bsp2/+ isolated islets showed no altered insulin secretion, we found a 65% decrease in pancreatic insulin content associated with a 30% decrease in total large islet volume and a 20% decrease in total ß-cell volume. These defects were associated with a 30% decrease in expression of the pro-endocrine gene Neurog3 that we previously identified as a direct target of Hnf1b, showing a developmental etiology. As another clinical feature of MODY5 patients, the Hnf1bsp2/+ pancreases display exocrine dysfunction with hypoplasia. We observed chronic pancreatitis with loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis, with upregulation of signaling pathways and impaired acinar cell regeneration. This was associated with ductal cell deficiency characterized by shortened primary cilia. Importantly, the Hnf1bsp2/+ mouse model reproduces the pancreatic features of the human MODY5/HNF1B disease, providing a unique in vivo tool for molecular studies of the endocrine and exocrine defects and to advance basic and translational research. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Doenças do Sistema Nervoso Central/genética , Doenças do Sistema Nervoso Central/fisiopatologia , Esmalte Dentário/anormalidades , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Fator 1-beta Nuclear de Hepatócito/genética , Doenças Renais Císticas/genética , Doenças Renais Císticas/fisiopatologia , Pâncreas/fisiopatologia , Animais , Doenças do Sistema Nervoso Central/patologia , Esmalte Dentário/patologia , Esmalte Dentário/fisiopatologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Doenças Renais Císticas/patologia , Camundongos , Camundongos Transgênicos , Mutação , Pâncreas/patologia , Fenótipo
4.
Diabetes ; 69(7): 1389-1400, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32354857

RESUMO

Infants born to mothers with obesity have a greater risk for childhood obesity and metabolic diseases; however, the underlying biological mechanisms remain poorly understood. We used a Japanese macaque model to investigate whether maternal obesity combined with a Western-style diet (WSD) impairs offspring muscle insulin action. Adult females were fed a control or WSD prior to and during pregnancy through lactation, and offspring subsequently weaned to a control or WSD. Muscle glucose uptake and signaling were measured ex vivo in fetal (n = 5-8/group) and juvenile (n = 8/group) offspring. In vivo signaling was evaluated after an insulin bolus just prior to weaning (n = 4-5/group). Maternal WSD reduced insulin-stimulated glucose uptake and impaired insulin signaling at the level of Akt phosphorylation in fetal muscle. In juvenile offspring, insulin-stimulated glucose uptake was similarly reduced by both maternal and postweaning WSD and corresponded to modest reductions in insulin-stimulated Akt phosphorylation relative to controls. We conclude that maternal WSD leads to a persistent decrease in offspring muscle insulin-stimulated glucose uptake even in the absence of increased offspring adiposity or markers of systemic insulin resistance. Switching offspring to a healthy diet did not reverse the effects of maternal WSD on muscle insulin action, suggesting earlier interventions may be warranted.


Assuntos
Dieta Ocidental , Feto/metabolismo , Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/metabolismo , Obesidade Materna/complicações , Animais , Transporte Biológico , Feminino , Macaca fuscata , Fosforilação , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Cell Mol Gastroenterol Hepatol ; 8(4): 579-594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31310834

RESUMO

BACKGROUND & AIMS: Activating mutation of the KRAS gene is common in some cancers, such as pancreatic cancer, but rare in other cancers. Chronic pancreatitis is a predisposing condition for pancreatic ductal adenocarcinoma (PDAC), but how it synergizes with KRAS mutation is not known. METHODS: We used a mouse model to express an activating mutation of Kras in conjunction with obstruction of the main pancreatic duct to recapitulate a common etiology of human chronic pancreatitis. Because the cell of origin of PDAC is not clear, Kras mutation was introduced into either duct cells or acinar cells. RESULTS: Although KrasG12D expression in both cell types was protective against damage-associated cell death, chronic pancreatitis induced p53, p21, and growth arrest only in acinar-derived cells. Mutant duct cells did not elevate p53 or p21 expression and exhibited increased proliferation driving the appearance of PDAC over time. CONCLUSIONS: One mechanism by which tissues may be susceptible or resistant to KRASG12D-initiated tumorigenesis is whether they undergo a p53-mediated damage response. In summary, we have uncovered a mechanism by which inflammation and intrinsic cellular programming synergize for the development of PDAC.


Assuntos
Pancreatite Crônica/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/metabolismo , Animais , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica , Modelos Animais de Doenças , Genes ras , Metaplasia , Camundongos , Mutação , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/genética , Lesões Pré-Cancerosas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Neoplasias Pancreáticas
6.
Endocrinology ; 160(8): 1885-1894, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271410

RESUMO

This review describes formation of the islet basement membrane and the function of extracellular matrix (ECM) components in ß-cell proliferation and survival. Implications for islet transplantation are discussed. The insulin-producing ß-cell is key for maintaining glucose homeostasis. The islet microenvironment greatly influences ß-cell survival and proliferation. Within the islet, ß-cells contact the ECM, which is deposited primarily by intraislet endothelial cells, and this interaction has been shown to modulate proliferation and survival. ECM-localized growth factors, such as vascular endothelial growth factor and cellular communication network 2, signal through specific receptors and integrins on the ß-cell surface. Further understanding of how the ECM functions to influence ß-cell proliferation and survival will provide targets for enhancing functional ß-cell mass for the treatment of diabetes.


Assuntos
Matriz Extracelular/fisiologia , Células Secretoras de Insulina/fisiologia , Animais , Proliferação de Células , Sobrevivência Celular , Colágeno/fisiologia , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Humanos , Integrinas/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
7.
Cell Mol Gastroenterol Hepatol ; 8(3): 487-511, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31229598

RESUMO

BACKGROUND & AIMS: The exocrine pancreas consists of acinar cells that produce digestive enzymes transported to the intestine through a branched ductal epithelium. Chronic pancreatitis is characterized by progressive inflammation, fibrosis, and loss of acinar tissue. These changes of the exocrine tissue are risk factors for pancreatic cancer. The cause of chronic pancreatitis cannot be identified in one quarter of patients. Here, we investigated how duct dysfunction could contribute to pancreatitis development. METHODS: The transcription factor Hnf1b, first expressed in pancreatic progenitors, is strictly restricted to ductal cells from late embryogenesis. We previously showed that Hnf1b is crucial for pancreas morphogenesis but its postnatal role still remains unelucidated. To investigate the role of pancreatic ducts in exocrine homeostasis, we inactivated the Hnf1b gene in vivo in mouse ductal cells. RESULTS: We uncovered that postnatal Hnf1b inactivation in pancreatic ducts leads to chronic pancreatitis in adults. Hnf1bΔduct mutants show dilatation of ducts, loss of acinar cells, acinar-to-ductal metaplasia, and lipomatosis. We deciphered the early events involved, with down-regulation of cystic disease-associated genes, loss of primary cilia, up-regulation of signaling pathways, especially the Yap pathway, which is involved in acinar-to-ductal metaplasia. Remarkably, Hnf1bΔduct mutants developed pancreatic intraepithelial neoplasia and promote pancreatic intraepithelial neoplasia progression in concert with KRAS. We further showed that adult Hnf1b inactivation in pancreatic ducts is associated with impaired regeneration after injury, with persistent metaplasia and initiation of neoplasia. CONCLUSIONS: Loss of Hnf1b in ductal cells leads to chronic pancreatitis and neoplasia. This study shows that Hnf1b deficiency may contribute to diseases of the exocrine pancreas and gains further insight into the etiology of pancreatitis and tumorigenesis.


Assuntos
Carcinoma in Situ/genética , Deleção de Genes , Fator 1-beta Nuclear de Hepatócito/genética , Ductos Pancreáticos/crescimento & desenvolvimento , Neoplasias Pancreáticas/genética , Pancreatite/genética , Animais , Animais Recém-Nascidos , Carcinoma in Situ/metabolismo , Feminino , Predisposição Genética para Doença , Fator 1-beta Nuclear de Hepatócito/metabolismo , Homeostase , Humanos , Camundongos , Pâncreas Exócrino/metabolismo , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/complicações , Pancreatite/metabolismo , Transdução de Sinais
8.
Curr Biol ; 27(21): R1147-R1151, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29112863

RESUMO

The liver is a critical hub for numerous physiological processes. These include macronutrient metabolism, blood volume regulation, immune system support, endocrine control of growth signaling pathways, lipid and cholesterol homeostasis, and the breakdown of xenobiotic compounds, including many current drugs. Processing, partitioning, and metabolism of macronutrients provide the energy needed to drive the aforementioned processes and are therefore among the liver's most critical functions. Moreover, the liver's capacities to store glucose in the form of glycogen, with feeding, and assemble glucose via the gluconeogenic pathway, in response to fasting, are critical. The liver oxidizes lipids, but can also package excess lipid for secretion to and storage in other tissues, such as adipose. Finally, the liver is a major handler of protein and amino acid metabolism as it is responsible for the majority of proteins secreted in the blood (whether based on mass or range of unique proteins), the processing of amino acids for energy, and disposal of nitrogenous waste from protein degradation in the form of urea metabolism. Over the course of evolution this array of hepatic functions has been consolidated in a single organ, the liver, which is conserved in all vertebrates. Developmentally, this organ arises as a result of a complex differentiation program that is initiated by exogenous signal gradients, cellular localization cues, and an intricate hierarchy of transcription factors. These processes that are fully developed in the mature liver are imperative for life. Liver failure from any number of sources (e.g. viral infection, overnutrition, or oncologic burden) is a global health problem. The goal of this primer is to concisely summarize hepatic functions with respect to macronutrient metabolism. Introducing concepts critical to liver development, organization, and physiology sets the stage for these functions and serves to orient the reader. It is important to emphasize that insight into hepatic pathologies and potential therapeutic avenues to treat these conditions requires an understanding of the development and physiology of specialized hepatic functions.


Assuntos
Metabolismo Energético/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado , Aminoácidos/metabolismo , Animais , Transporte Biológico , Glucose/metabolismo , Glicogênio/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Células de Kupffer/metabolismo , Fígado/anatomia & histologia , Fígado/metabolismo , Fígado/fisiologia , Obesidade/metabolismo , Proteínas/metabolismo
9.
Trends Dev Biol ; 9: 43-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018056

RESUMO

Developmental processes are remarkably well conserved among species, and among the most highly conserved developmental regulators are transcription factor families. The Onecut transcription factor family consists of three members known for their single "cut" DNA-binding domain and an aberrant homeodomain. The three members of the Onecut family are highly conserved from Drosophila to humans and have significant roles in regulating the development of diverse tissues derived from the ectoderm or endoderm, where they activate a number of gene families. Of note, the genetic interaction between Onecut family members and Neurogenin genes appears to be essential in multiple tissues for proper specification and development of unique cell types. This review highlights the importance of the Onecut factors in cell fate specification and organogenesis, highlighting their role in vertebrates, and discusses their role in the maintenance of cell fate and prevention of disease. We cover the essential spatial and temporal control of Onecut factor expression and how this tight regulation is required for proper specification and subsequent terminal differentiation of multiple tissue types including those within the retina, central nervous system, liver and pancreas. Beyond development, Onecut factors perform necessary functions in mature cell types; their misregulation can contribute to diseases such as pancreatic cancer. Given the importance of this family of transcription factors in development and disease, their consideration in essential transcription factor networks is underappreciated.

10.
Lab Invest ; 94(5): 517-27, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24638272

RESUMO

Normal pancreatic epithelium progresses through various stages of pancreatic intraepithelial neoplasms (PanINs) in the development of pancreatic ductal adenocarcinoma (PDAC). Transcriptional regulation of this progression is poorly understood. In mouse, the hepatic nuclear factor 6 (Hnf6) transcription factor is expressed in ductal cells and at lower levels in acinar cells of the adult pancreas, but not in mature endocrine cells. Hnf6 is critical for terminal differentiation of the ductal epithelium during embryonic development and for pancreatic endocrine cell specification. We previously showed that, in mice, loss of Hnf6 from the pancreatic epithelium during organogenesis results in increased duct proliferation and altered duct architecture, increased periductal fibrosis and acinar-to-ductal metaplasia. Here we show that decreased expression of HNF6 is strongly correlated with increased severity of PanIN lesions in samples of human pancreata and is absent from >90% of PDAC. Mouse models in which cancer progression can be analyzed from the earliest stages that are seldom accessible in humans support a role for Hnf6 loss in progression from early- to late-stage PanIN and PDAC. In addition, gene expression analyses of human pancreatic cancer reveal decreased expression of HNF6 and its direct and indirect target genes compared with normal tissue and upregulation of genes that act in opposition to HNF6 and its targets. The negative correlation between HNF6 expression and pancreatic cancer progression suggests that HNF6 maintains pancreatic epithelial homeostasis in humans, and that its loss contributes to the progression from PanIN to ductal adenocarcinoma. Insight on the role of HNF6 in pancreatic cancer development could lead to its use as a biomarker for early detection and prognosis.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Fator 6 Nuclear de Hepatócito/deficiência , Fator 6 Nuclear de Hepatócito/genética , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Progressão da Doença , Fator 6 Nuclear de Hepatócito/metabolismo , Homeostase/genética , Humanos , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia
11.
J Cell Physiol ; 229(5): 672-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24127409

RESUMO

Connective tissue growth factor (CTGF/CCN2) and bone morphogenetic protein (BMP)-2 are both produced and secreted by osteoblasts. Both proteins have been shown to have independent effects in regulating osteoblast proliferation, maturation and mineralization. However, how these two proteins interact during osteoblast differentiation remains unknown. In this study, we utilized two cell culture model systems, osteoblasts derived from CTGF knockout (KO) mice and osteoblasts infected with an adenovirus which over-expresses CTGF (Ad-CTGF), to investigate the effects of CTGF and BMP-2 on osteoblast development and function in vitro. Contrary to a previously published report, osteoblast maturation and mineralization were similar in osteogenic cultures derived from KO and WT calvaria in the absence of BMP-2 stimulation. Interestingly, in KO and WT osteoblast cultures stimulated with BMP-2, the KO osteoblasts exhibited enhanced osteoblast differentiation. This increase in osteoblast differentiation was accompanied by increased protein levels of phosphorylated Smad 1/5/8 and mRNA expression levels of bone morphogenetic protein receptor Ib. We also examined osteoblast differentiation in cultures that were infected with an adenoviral-CTGF vector (Ad-CTGF) and in controls. Continuous over-expression of CTGF resulted in decreased osteoblast maturation and mineralization in both unstimulated and BMP-2 stimulated cultures. Impaired osteoblast differentiation in cultures over-expressing CTGF was accompanied by decreased protein levels of phosphorylated Smad 1/5/8. Collectively, the data from these studies demonstrate that CTGF acts to negatively regulate BMP-2 induced signaling and osteoblast differentiation, and warrant additional studies to determine the precise mechanism(s) responsible for this effect. J. Cell. Physiol. 229: 672-681, 2014. © 2013 Wiley Periodicals, Inc.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/fisiologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Osteoblastos/citologia , Animais , Proteína Morfogenética Óssea 2/genética , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Osteoblastos/fisiologia , Ratos , Transdução de Sinais/fisiologia
12.
Lab Invest ; 93(1): 81-95, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23212098

RESUMO

Mesenchymal stem cells (MSCs) that overexpress secreted frizzled-related protein 2 (sFRP2) exhibit an enhanced reparative phenotype. The secretomes of sFRP2-overexpressing MSCs and vector control-MSCs were compared through liquid chromatography tandem mass spectrometry. Proteomic profiling revealed that connective tissue growth factor (CTGF; CCN2) was overrepresented in the conditioned media of sFRP2-overexpressing MSCs and MSC-derived CTGF could thus be an important paracrine effector. Subcutaneously implanted, MSC-loaded polyvinyl alcohol (PVA) sponges and stented excisional wounds were used as wound models to study the dynamics of CTGF expression. Granulation tissue generated within the sponges and full-thickness skin wounds showed transient upregulation of CTGF expression by MSCs and fibroblasts, implying a role for this molecule in early tissue repair. Although collagen and COL1A2 mRNA were not increased when recombinant CTGF was administered to sponges during the early phase (day 1-6) of tissue repair, prolonged administration (>15 days) of exogenous CTGF into PVA sponges resulted in fibroblast proliferation and increased deposition of collagen within the experimental granulation tissue. In support of its physiological role, CTGF immunoinhibition during early repair (days 0-7) reduced the quantity, organizational quality and vascularity of experimental granulation tissue in the sponge model. However, CTGF haploinsufficiency was not enough to reduce collagen deposition in excisional wounds. Similar to acute murine wound models, CTGF was transiently present in the early phase of human acute burn wound healing. Together, these results further support a physiological role for CTGF in wound repair and demonstrate that when CTGF expression is confined to early tissue repair, it serves a pro-reparative role. These data also further illustrate the potential of MSC-derived paracrine modulators to enhance tissue repair.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/biossíntese , Células-Tronco Mesenquimais/metabolismo , Cicatrização/fisiologia , Análise de Variância , Animais , Queimaduras/metabolismo , Queimaduras/patologia , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Fenômenos Fisiológicos Celulares/fisiologia , Colágeno/química , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Meios de Cultivo Condicionados , Humanos , Imuno-Histoquímica , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/química , Camundongos , Camundongos Knockout , Proteômica , Pele/química , Pele/lesões , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
13.
Dev Dyn ; 241(12): 1944-59, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23073844

RESUMO

BACKGROUND: Connective tissue growth factor (CTGF/CCN2) is a matricellular protein that is highly expressed during bone development. Mice with global CTGF ablation (knockout, KO) have multiple skeletal dysmorphisms and perinatal lethality. A quantitative analysis of the bone phenotype has not been conducted. RESULTS: We demonstrated skeletal site-specific changes in growth plate organization, bone microarchitecture, and shape and gene expression levels in CTGF KO compared with wild-type mice. Growth plate malformations included reduced proliferation zone and increased hypertrophic zone lengths. Appendicular skeletal sites demonstrated decreased metaphyseal trabecular bone, while having increased mid-diaphyseal bone and osteogenic expression markers. Axial skeletal analysis showed decreased bone in caudal vertebral bodies, mandibles, and parietal bones in CTGF KO mice, with decreased expression of osteogenic markers. Analysis of skull phenotypes demonstrated global and regional differences in CTGF KO skull shape resulting from allometric (size-based) and nonallometric shape changes. Localized differences in skull morphology included increased skull width and decreased skull length. Dysregulation of the transforming growth factor-ß-CTGF axis coupled with unique morphologic traits provides a potential mechanistic explanation for the skull phenotype. CONCLUSIONS: We present novel data on a skeletal phenotype in CTGF KO mice, in which ablation of CTGF causes site-specific aberrations in bone formation.


Assuntos
Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Lâmina de Crescimento/embriologia , Osteogênese/fisiologia , Crânio/embriologia , Coluna Vertebral/embriologia , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Camundongos , Camundongos Knockout , Especificidade de Órgãos/fisiologia
14.
PLoS One ; 7(3): e33529, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470452

RESUMO

Tamoxifen (Tm)-inducible Cre recombinases are widely used to perform gene inactivation and lineage tracing studies in mice. Although the efficiency of inducible Cre-loxP recombination can be easily evaluated with reporter strains, the precise length of time that Tm induces nuclear translocation of CreER(Tm) and subsequent recombination of a target allele is not well defined, and difficult to assess. To better understand the timeline of Tm activity in vivo, we developed a bioassay in which pancreatic islets with a Tm-inducible reporter (from Pdx1(PB)-CreER(Tm);R26R(lacZ) mice) were transplanted beneath the renal capsule of adult mice previously treated with three doses of 1 mg Tm, 8 mg Tm, or corn oil vehicle. Surprisingly, recombination in islet grafts, as assessed by expression of the ß-galactosidase (ß-gal) reporter, was observed days or weeks after Tm treatment, in a dose-dependent manner. Substantial recombination occurred in islet grafts long after administration of 3×8 mg Tm: in grafts transplanted 48 hours after the last Tm injection, 77.9±0.4% of ß-cells were ß-gal+; in ß-cells placed after 1 week, 46.2±5.0% were ß-gal+; after 2 weeks, 26.3±7.0% were ß-gal+; and after 4 weeks, 1.9±0.9% were ß-gal+. Islet grafts from mice given 3×1 mg Tm showed lower, but notable, recombination 48 hours (4.9±1.7%) and 1 week (4.5±1.9%) after Tm administration. These results show that Tm doses commonly used to induce Cre-loxP recombination may continue to label significant numbers of cells for weeks after Tm treatment, possibly confounding the interpretation of time-sensitive studies using Tm-dependent models. Therefore, investigators developing experimental approaches using Tm-inducible systems should consider both maximal recombination efficiency and the length of time that Tm-induced Cre-loxP recombination occurs.


Assuntos
Antineoplásicos Hormonais/farmacologia , Integrases/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Recombinação Genética/efeitos dos fármacos , Tamoxifeno/farmacologia , Animais , Genes Reporter , Integrases/genética , Transplante das Ilhotas Pancreáticas , Camundongos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , beta-Galactosidase/genética
15.
Endocrinology ; 151(9): 4146-57, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20668028

RESUMO

Old astrocyte specifically induced substance (OASIS) has previously been shown to be a putative endoplasmic reticulum (ER) stress sensor in astrocytes with a mechanism of activation that is similar to ATF6. In this study we investigated the expression and activation of endogenous and overexpressed OASIS in pancreatic beta-cells. OASIS mRNA expression was detected in pancreatic beta-cell lines and rodent islets, and the expression level was up-regulated by ER stress-inducing compounds. Endogenous OASIS protein, however, is expressed at low levels in pancreatic beta-cell lines and rodent islets, possibly due to abundant levels of the micro-RNA miR-140 present in these cells. In contrast, expression of both full-length and cleaved (active) OASIS was readily detectable in the developing mouse pancreas (embryonic d 15.5). Microarray analysis after expression of an active nuclear-localized version of OASIS in an inducible INS-1 beta-cell line resulted in the up-regulation of many genes implicated in extracellular matrix production and protein transport but not classical ER stress response genes. Consistent with this, expression of active OASIS failed to induce glucose-regulated protein 78 kDa promoter activity in pancreatic beta-cells. These results suggest that the repertoire of genes induced by OASIS is cell type-dependent and that the OASIS protein may have a role in pancreas development.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Processamento Alternativo , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Células Secretoras de Insulina/citologia , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Microscopia de Fluorescência , Análise de Sequência com Séries de Oligonucleotídeos , Pâncreas/embriologia , Pâncreas/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Development ; 137(14): 2289-96, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20534672

RESUMO

Studies in both humans and rodents have found that insulin(+) cells appear within or near ducts of the adult pancreas, particularly following damage or disease, suggesting that these insulin(+) cells arise de novo from ductal epithelium. We have found that insulin(+) cells are continuous with duct cells in the epithelium that makes up the hyperplastic ducts of both chronic pancreatitis and pancreatic cancer in humans. Therefore, we tested the hypothesis that both hyperplastic ductal cells and their associated insulin(+) cells arise from the same cell of origin. Using a mouse model that develops insulin(+) cell-containing hyperplastic ducts in response to the growth factor TGFalpha, we performed genetic lineage tracing experiments to determine which cells gave rise to both hyperplastic ductal cells and duct-associated insulin(+) cells. We found that hyperplastic ductal cells arose largely from acinar cells that changed their cell fate, or transdifferentiated, into ductal cells. However, insulin(+) cells adjacent to acinar-derived ductal cells arose from pre-existing insulin(+) cells, suggesting that islet endocrine cells can intercalate into hyperplastic ducts as they develop. We conclude that apparent pancreatic plasticity can result both from the ability of acinar cells to change fate and of endocrine cells to reorganize in association with duct structures.


Assuntos
Ilhotas Pancreáticas/metabolismo , Pâncreas/fisiologia , Adulto , Animais , Diferenciação Celular , Colangiopancreatografia Retrógrada Endoscópica , Células Endócrinas , Células Epiteliais/metabolismo , Epitélio/metabolismo , Humanos , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Transgênicos , Pâncreas/metabolismo , Pâncreas Exócrino/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/metabolismo , Transdução de Sinais
17.
Mech Dev ; 126(11-12): 958-73, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19766716

RESUMO

Within the developing pancreas Hepatic Nuclear Factor 6 (HNF6) directly activates the pro-endocrine transcription factor, Ngn3. HNF6 and Ngn3 are each essential for endocrine differentiation and HNF6 is also required for embryonic duct development. Most HNF6(-/-) animals die as neonates, making it difficult to study later aspects of HNF6 function. Here, we describe, using conditional gene inactivation, that HNF6 has specific functions at different developmental stages in different pancreatic lineages. Loss of HNF6 from Ngn3-expressing cells (HNF6(Delta endo)) resulted in fewer multipotent progenitor cells entering the endocrine lineage, but had no effect on beta cell terminal differentiation. Early, pancreas-wide HNF6 inactivation (HNF6(Delta panc)) resulted in endocrine and ductal defects similar to those described for HNF6 global inactivation. However, all HNF6(Delta panc) animals survived to adulthood. HNF6(Delta panc) pancreata displayed increased ductal cell proliferation and metaplasia, as well as characteristics of pancreatitis, including up-regulation of CTGF, MMP7, and p8/Nupr1. Pancreatitis was most likely caused by defects in ductal primary cilia. In addition, expression of Prox1, a known regulator of pancreas development, was decreased in HNF6(Delta panc) pancreata. These data confirm that HNF6 has both early and late functions in the developing pancreas and is essential for maintenance of Ngn3 expression and proper pancreatic duct morphology.


Assuntos
Diferenciação Celular , Fator 6 Nuclear de Hepatócito/metabolismo , Ilhotas Pancreáticas/embriologia , Ductos Pancreáticos/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/genética , Linhagem da Célula , Cílios/metabolismo , Cílios/patologia , Regulação para Baixo/genética , Epitélio/embriologia , Epitélio/metabolismo , Epitélio/patologia , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Marcação de Genes , Fator 6 Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Pancreatite/metabolismo , Pancreatite/patologia , Células-Tronco/citologia , Fatores de Tempo , Proteínas Supressoras de Tumor/metabolismo
18.
Mol Endocrinol ; 23(3): 324-36, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19131512

RESUMO

The factors necessary for normal pancreatic islet morphogenesis have not been well characterized. Here we report that connective tissue growth factor (CTGF) is involved in the establishment of normal islet endocrine cell ratio and architecture. CTGF is a secreted protein known to modulate several growth factor-signaling pathways including TGF-beta, BMP, and Wnt. Although its role in pancreatic diseases such as pancreatitis and pancreatic cancer are well documented, a role for CTGF in normal pancreas development and function has heretofore not been examined. Using a lacZ-tagged CTGF allele, we describe for the first time the expression pattern of CTGF in the developing pancreas and the requirement of CTGF for normal islet morphogenesis and embryonic beta-cell proliferation. CTGF is highly expressed in pancreatic ductal epithelium and vascular endothelium, as well as at lower levels in developing insulin(+) cells, but becomes down-regulated in beta-cells soon after birth. Pancreata from CTGF null embryos have an increase in glucagon(+) cells with a concomitant decrease in insulin(+) cells, and show defects in islet morphogenesis. Loss of CTGF also results in a dramatic decrease in beta-cell proliferation at late gestation. Unlike CTGF null embryos, CTGF heterozygotes survive past birth and exhibit a range of islet phenotypes, including an intermingling of islet cell types, increased number of glucagon(+) cells, and beta-cell hypertrophy.


Assuntos
Linhagem da Célula/genética , Movimento Celular/genética , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/genética , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/embriologia , Animais , Tamanho Celular , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Glucagon/metabolismo , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
19.
Gastroenterology ; 136(3): 1091-103, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19121634

RESUMO

BACKGROUND & AIMS: Extensive evidence suggests that Akt signaling plays an important role in beta-cell mass and function, although its function in the regulation of the different pancreatic fates has not been adequately investigated. The goal of these studies was to assess the role of Akt signaling in the pancreatic differentiation programs. METHODS: For these experiments, we have generated a double reporter mouse model that provides activation of Akt signaling in a cell type-specific manner. This mouse model conditionally overexpresses a constitutively active form of Akt upon Cre-mediated recombination. Activation of Akt signaling in pancreatic progenitors and acinar and beta-cells was achieved by crossing this animal model to specific Cre-lines. RESULTS: We showed that overexpression of a constitutively active Akt in pancreatic and duodenal homeobox 1 (Pdx1) progenitors induced expansion of ductal structures expressing progenitor markers. This expansion resulted in part from increased proliferation of the ductal epithelium. Lineage-tracing experiments in mice with activation of Akt signaling in mature acinar and beta-cells suggested that acinar-to-ductal and beta-cell-to-acinar/ductal transdifferentiation also contributed to the expansion of the ductal compartment. In addition to the changes in cell plasticity, these studies demonstrated that chronic activation of Akt signaling in Pdx1 progenitors induced the development of premalignant lesions and malignant transformation in old mice. CONCLUSIONS: The current work unravels some of the molecular mechanisms of cellular plasticity and reprogramming, and demonstrates for the first time that activation of Akt signaling regulates the fate of differentiated pancreatic cells in vivo.


Assuntos
Transformação Celular Neoplásica/metabolismo , Pâncreas/fisiologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Genes Reporter , Glucose/metabolismo , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Integrases/genética , Camundongos , Camundongos Transgênicos , Pâncreas/citologia , Ductos Pancreáticos/citologia , Ductos Pancreáticos/fisiologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Transativadores/genética
20.
Diabetes ; 55(11): 2974-85, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17065333

RESUMO

To investigate molecular mechanisms controlling islet vascularization and revascularization after transplantation, we examined pancreatic expression of three families of angiogenic factors and their receptors in differentiating endocrine cells and adult islets. Using intravital lectin labeling, we demonstrated that development of islet microvasculature and establishment of islet blood flow occur concomitantly with islet morphogenesis. Our genetic data indicate that vascular endothelial growth factor (VEGF)-A is a major regulator of islet vascularization and revascularization of transplanted islets. In spite of normal pancreatic insulin content and beta-cell mass, mice with beta-cell-reduced VEGF-A expression had impaired glucose-stimulated insulin secretion. By vascular or diffusion delivery of beta-cell secretagogues to islets, we showed that reduced insulin output is not a result of beta-cell dysfunction but rather caused by vascular alterations in islets. Taken together, our data indicate that the microvasculature plays an integral role in islet function. Factors modulating VEGF-A expression may influence islet vascularity and, consequently, the amount of insulin delivered into the systemic circulation.


Assuntos
Ilhotas Pancreáticas/irrigação sanguínea , Neovascularização Fisiológica , Pâncreas/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Velocidade do Fluxo Sanguíneo , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Pâncreas/crescimento & desenvolvimento , Pâncreas/fisiologia , Fator A de Crescimento do Endotélio Vascular/deficiência , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA