Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(9): 6040-6047, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38606581

RESUMO

The mechanisms of Ni-catalyzed 3,3-dialkynylation of 2-aryl acrylamide have been investigated by using density functional theory calculations. The result shows that this reaction includes double alkynylation, which involves sequential key steps of vinylic C-H bond activation, successive oxidative addition, and reductive elimination, with the second C-H bond activation being the rate-determining step. C-H and N-H bond activation occurs via the concerted metalation-deprotonation mechanism. The calculations show that no transition state exists in the first reductive elimination process, and a negative free energy barrier in the second reductive elimination process though a transition state is identified, indicating that the nickel-catalyzed vinylic C(sp2)-C(sp) bond formation does not require activation energy. Z-E isomerization is the prerequisite for the second alkynylation. In addition, our spin-flip TDDFT (SF-TDDFT) computational result discloses that the actual process of Z-E isomerization occurs on the potential energy surface of the first excited singlet state S1.

2.
J Org Chem ; 88(2): 944-951, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36602522

RESUMO

The mechanism of iron-catalyzed intramolecular [2 + 2] cycloaddition and cycloisomerization of enyne acetates has been investigated with DFT computations. Both mechanisms start the catalytic cycle from the stepwise 1,2-acyloxy migration to afford the iron carbene. The [2 + 2] cycloaddition mechanism involves subsequent key steps of [2 + 2] cycloaddition, 1,2-acyloxy migration, and reductive elimination to generate the azabicyclo [3.2.0] heptane product, with the reductive elimination being the rate-determining step. The cycloisomerization mechanism involves subsequent key steps of [2 + 2] cycloaddition, stepwise 1,4-acyloxy migration to produce the allenylpyrrolidine product, with the 1,4-acyloxy migration being the rate-determining step. Reaction potential energy surfaces for two model substrates that have or do not have alkene-terminal substituents have been investigated and the origins of the selectivities have been disclosed. Moreover, energy profiles with three possible spin states (SFe = 0, 1, 2) have been considered. The reaction is suggested to occur mainly on the singlet potential energy surface with a few spin crossovers between singlet and triplet states involved, which indicates that this reaction should have two-state reactivity (TSR).

3.
ACS Appl Mater Interfaces ; 11(40): 36638-36648, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31523964

RESUMO

Given the complexity and diversity of actual oily sewages, developing multifunctional separation materials with features of high separation efficiency and low energy consumption for separating diverse oil/water emulsions is urgently needed, yet it remains a formidable challenge till now. Herein, a superior graphene/poly(vinyl alcohol) Janus aerogel (J-CGPA), showing an intriguing three-dimensional (3D) hierarchical architecture (a dense skin-layer and a larger internal cell network) and desirable asymmetric wettability, was exploited via a simple direct freeze-shaping technique and subsequent mussel-inspired hydrophilic modification. Benefiting from the controlled unilateral decoration of dopamine, the resultant aerogels displayed completely opposite superwettability on two antithetic sides, i.e., one side is highly hydrophobic (water contact angle (WCA), 143°), whereas the other side is superhydrophilic. On the basis of the favorable 3D hierarchical structure and binary cooperative superwetting properties, the Janus aerogels achieved a remarkable switchable separation performance for both highly emulsified oil-in-water and water-in-oil emulsions as well as stratified oil/water mixtures accompanied with outstanding separation efficiencies. Particularly, an ultrahigh permeation flux of 1306 L m-2 h-1 along with a high rejection efficiency of 99.7% was acquired solely under the driving of gravity (<1 kPa), which is 1-2 order of magnitude higher than that of pioneering two-dimensional Janus polymeric/inorganic membranes recently reported. Moreover, together with robust reusability, this novel 3D Janus aerogel indicates a promising practical application for high-performance oily wastewater remediation.

4.
J Colloid Interface Sci ; 557: 282-290, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525665

RESUMO

Controlling the bubbles' behavior on a solid surface is significant for exploring more related applications and thus recently has attracted increased investigations. Based on this, a Janus poly (l-lactic acid) (PLLA) membrane with definitely opposite water wettability in air and opposite bubble wettability underwater was successfully fabricated in this work. The obtained Janus membrane exhibited unidirectional transport for air bubble underwater from the superaerophilic side to superaerophobic side, meanwhile prevented the permeation of water medium from both sides under low pressure. This special membrane was designed to couple two chemical reactions. During the designed chemical reaction process, the feature of bubble unidirectional transport allowed the carbon dioxide (CO2) produced in one reaction system to transport through the resultant membrane into another reaction system, wherein it could be consumed. Meanwhile, the anti-water-permeation function of the membrane guaranteed that the two chemical reactions could be performed independently. We believe that the present research could broaden the potential applications of membranes with super-wetting character for gas bubbles.

5.
J Colloid Interface Sci ; 505: 49-58, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28558292

RESUMO

Superhydrophobic membranes with tunable adhesion have attracted intense interests for various engineering applications. In this work, superhydrophobic sustainable poly (lactic acid) (PLA) porous membrane with tunable adhesive force from 101µN to 29µN was successfully fabricated via one-step phase separation method. The incorporation of Perfluoro-1-decene (PFD) into the PLLA/PDLA membrane via the in situ polymerization can facilely tune the PLLA/PDLA stereocomplex crystallization during phase inversion, which consequently caused the unique morphology blooming evolution from bud to full-blown state. The resulted membrane showed tunable pore size, porosity, surface area, surface roughness and superhydrophobicity, which enabled the membrane with controlled-release of oil soluble drugs.


Assuntos
Óleo de Fígado de Bacalhau/química , Membranas Artificiais , Poliésteres/química , Polímeros/química , Adesividade , Preparações de Ação Retardada , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA