RESUMO
Elderly patients with non-small-cell lung cancer (NSCLC) exhibit worse reactions to anticancer treatments. Adenocarcinoma (AC) is the predominant histologic subtype of NSCLC, is diverse and heterogeneous, and shows different outcomes and responses to treatment. The aim of this study was to establish a nomogram that includes the important prognostic factors based on the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2015. We collected 53,694 patients of older than 60 who have been diagnosed with lung AC from the SEER database. Univariate and multivariate Cox regression analyses were used to screen the independent prognostic factors, which were used to construct a nomogram for predicting survival rates in elderly AC patients. The nomogram was evaluated using the concordance index (C-index), calibration curves, net reclassification index (NRI), integrated discrimination improvement (IDI), and decision-curve analysis (DCA). Elderly AC patients were randomly divided into a training cohort and validation cohort. The nomogram model included the following 11 prognostic factors: age, sex, race, marital status, tumor site, histologic grade, American Joint Committee for Cancer (AJCC) stage, surgery status, radiotherapy status, chemotherapy status, and insurance type. The C-indexes of the training and validation cohorts for cancer-specific survival (CSS) (0.832 and 0.832, respectively) based on the nomogram model were higher than those of the AJCC model (0.777 and 0.774, respectively). The CSS discrimination performance as indicated by the AUC was better in the nomogram model than the AJCC model at 1, 3, and 5 years in both the training cohort (0.888 vs. 0.833, 0.887 vs. 0.837, and 0.876 vs. 0.830, respectively) and the validation cohort (0.890 vs. 0.832, 0.883 vs. 0.834, and 0.880 vs. 0.831, respectively). The predicted CSS probabilities showed optimal agreement with the actual observations in nomogram calibration plots. The NRI, IDI, and DCA for the 1-, 3-, and 5-year follow-up examinations verified the clinical usability and practical decision-making effects of the new model. We have developed a reliable nomogram for determining the prognosis of elderly AC patients, which demonstrated excellent discrimination and clinical usability and more accurate prognosis predictions. The nomogram may improve clinical decision-making and prognosis predictions for elderly AC patients.
RESUMO
OBJECTIVE: The disease complexity of metastatic non-small-cell lung cancer (mNSCLC) makes it difficult for physicians to make clinical decisions efficiently and accurately. The Watson for Oncology (WFO) system of artificial intelligence might help physicians by providing fast and precise treatment regimens. This study measured the concordance of the medical treatment regimens of the WFO system and actual clinical regimens, with the aim of determining the suitability of WFO recommendations for Chinese patients with mNSCLC. METHODS: Retrospective data of mNSCLC patients were input to the WFO, which generated a treatment regimen (WFO regimen). The actual regimen was made by physicians in a medical team for patients (medical-team regimen). The factors influencing the consistency of the two treatment options were analyzed by univariate and multivariate analyses. RESULTS: The concordance rate was 85.16% between the WFO and medical-team regimens for mNSCLC patients. Logistic regression showed that the concordance differed significantly for various pathological types and gene mutations in two treatment regimens. Patients with adenocarcinoma had a lower rate of "recommended" regimen than those with squamous cell carcinoma. There was a statistically significant difference in EGFR-mutant patients for "not recommended" regimens with inconsistency rate of 18.75%. In conclusion, the WFO regimen has 85.16% consistency rate with medical-team regimen in our treatment center. The different pathological type and different gene mutation markedly influenced the agreement rate of the two treatment regimens. CONCLUSION: WFO recommendations have high applicability to mNSCLC patients in our hospital. This study demonstrates that the valuable WFO system may assist the doctors better to determine the accurate and effective treatment regimens for mNSCLC patients in the Chinese medical setting.