Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cell ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38917788

RESUMO

Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.

3.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181741

RESUMO

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Assuntos
Neoplasias Pulmonares , Proteogenômica , Carcinoma de Pequenas Células do Pulmão , Humanos , Linhagem Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/química , Carcinoma de Pequenas Células do Pulmão/genética , Xenoenxertos , Biomarcadores Tumorais/análise
4.
Cell Rep Med ; 4(12): 101302, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38052215

RESUMO

The RATIONALE-307 study (ClinicalTrials.gov: NCT03594747) demonstrates prolonged progression-free survival (PFS) with first-line tislelizumab plus chemotherapy versus chemotherapy in advanced lung squamous cell carcinoma (LUSC; N = 360). Here we describe an immune-related gene expression signature (GES), composed of genes involved in both innate and adaptive immunity, that appears to differentiate tislelizumab plus chemotherapy PFS benefit versus chemotherapy. In contrast, a tislelizumab plus chemotherapy PFS benefit is observed regardless of programmed death ligand 1 (PD-L1) expression or tumor mutational burden (TMB). Genetic analysis reveals that NRF2 pathway activation is enriched in PD-L1positive and TMBhigh patients. NRF2 pathway activation is negatively associated with PFS, which affects efficacy outcomes associated with PD-L1 and TMB status, impairing their predictive potential. Mechanistic studies demonstrate that NRF2 directly mediates PD-L1 constitutive expression independent of adaptive PD-L1 regulation in LUSC. In summary, the GES is an immune signature that might identify LUSC patients likely to benefit from first-line tislelizumab plus chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Fator 2 Relacionado a NF-E2/genética , Receptor de Morte Celular Programada 1 , Resultado do Tratamento , Microambiente Tumoral/genética
5.
Exp Hematol Oncol ; 12(1): 77, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679762

RESUMO

BACKGROUND: UTX (encoded by KDM6A), a histone demethylase for H3K27me2/3, is frequently mutated in human cancers. However, its functional and regulatory mechanisms in colorectal cancer (CRC) remain unclear. METHODS: Immunohistochemistry staining was used to investigate the clinical relevance of UTX in CRC. Additionally, we generated a spontaneous mouse CRC model with conditional Utx knockout to explore the role of UTX in the colorectal tumorigenesis. Post-translational regulation of UTX was determined by co-immunoprecipitation and immunoblot analyses. RESULTS: Herein, we identify that downregulation of UTX, mediated by the Cullin 4B-DNA Damage Binding Protein-1-Constitutive Photomorphogenesis Protein 1 (CUL4B-DDB1-COP1) complex, promotes CRC progression. Utx deletion in intestinal epithelial cells enhanced the susceptibility to tumorigenesis in AOM/DSS-induced spontaneous mouse CRC model. However, this effect is primarily alleviated by GSK126, an inhibitor of histone methyltransferase EZH2. Mechanistically, EMP1 and AUTS2 are identified as putative UTX target genes mediating UTX functions in limiting intestinal tumorigenesis. Notably, the CUL4B-DDB1-COP1 complex is identified as the functional E3 ligase responsible for targeting UTX for degradation in CRC cells. Thus, Cop1 deficiency in mouse intestinal tissue results in UTX accumulation and restricts tumorigenesis. Furthermore, patient cohort analysis reveals that UTX expression is negatively correlated with clinical stage, favorable disease outcomes, and COP1 expression. CONCLUSIONS: In the current study, the tumor suppressor function and regulation of UTX in CRC provide a molecular basis and the rationale to target EZH2 in UTX-deficient CRC.

6.
Cell Chem Biol ; 30(11): 1436-1452.e10, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37611590

RESUMO

Wnt/ß-catenin signaling is a conserved pathway crucially governing development, homeostasis, and oncogenesis. Discoveries of its regulators hold great values in both basic and translational research. Through screening, we identified a deubiquitinase, USP10, as a critical modulator of ß-catenin. Mechanistically, USP10 binds to key scaffold Axin1 via conserved motifs and stabilizes Axin1 through K48-linked deubiquitination. Surprisingly, USP10 physically tethers Axin1 and ß-catenin and promotes the phase separation for ß-catenin suppression regardless of the enzymatic activity. Function-wise, USP10 enzymatic activity preferably regulates embryonic development and both the enzymatic activity and physical function jointly control intestinal homeostasis by antagonizing ß-catenin. In colorectal cancer, USP10 substantially represses cancer growth mainly through physical promotion of phase separation and correlates with Wnt/ß-catenin magnitude clinically. Collectively, we discovered USP10 functioning in multiple biological processes against ß-catenin and unearthed the enzyme-dependent and -independent "dual-regulating" mechanism. These two functions of USP10 work in parallel and are context dependent.


Assuntos
Via de Sinalização Wnt , beta Catenina , beta Catenina/metabolismo , Enzimas Desubiquitinantes/metabolismo
7.
Natl Sci Rev ; 10(8): nwad167, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575948

RESUMO

Normal adjacent tissues (NATs) of hepatocellular carcinoma (HCC) differ from healthy liver tissues and their heterogeneity may contain biological information associated with disease occurrence and clinical outcome that has yet to be fully evaluated at the proteomic level. This study provides a detailed description of the heterogeneity of NATs and the differences between NATs and healthy livers and revealed that molecular features of tumor subgroups in HCC were partially reflected in their respective NATs. Proteomic data classified HCC NATs into two subtypes (Subtypes 1 and 2), and Subtype 2 was associated with poor prognosis and high-risk recurrence. The pathway and immune features of these two subtypes were characterized. Proteomic differences between the two NAT subtypes and healthy liver tissues were further investigated using data-independent acquisition mass spectrometry, revealing the early molecular alterations associated with the progression from healthy livers to NATs. This study provides a high-quality resource for HCC researchers and clinicians and may significantly expand the knowledge of tumor NATs to eventually benefit clinical practice.

8.
Cancer Discov ; 13(10): 2248-2269, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37486241

RESUMO

KRAS mutations are causally linked to protumor inflammation and are identified as driving factors in tumorigenesis. Here, using multiomics data gathered from a large set of patients, we showed that KRAS mutation was associated with a specific landscape of alternative mRNA splicing that connected to myeloid inflammation in intrahepatic cholangiocarcinoma (iCCA). Then, we identified a negative feedback mechanism in which the upregulation of interleukin 1 receptor antagonist (IL1RN)-201/203 due to alternative splicing confers vital anti-inflammatory effects in KRAS-mutant iCCA. In KRAS-mutant iCCA mice, both IL1RN-201/203 upregulation and anakinra treatment ignited a significant antitumor immune response by altering neutrophil recruitment and phenotypes. Furthermore, anakinra treatment synergistically enhanced anti-PD-1 therapy to activate intratumoral GZMB+ CD8+ T cells in KRAS-mutant iCCA mice. Clinically, we found that high IL1RN-201/203 levels in patients with KRAS-mutant iCCA were significantly associated with superior response to anti-PD-1 immunotherapy. SIGNIFICANCE: This work describes a novel inflammatory checkpoint mediated by IL1RN alternative splicing variants that may serve as a promising basis to develop therapeutic options for KRAS-mutant iCCA and other cancers. This article is featured in Selected Articles from This Issue, p. 2109.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Inflamação/tratamento farmacológico , Inflamação/genética
9.
J Environ Pathol Toxicol Oncol ; 42(4): 47-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37522567

RESUMO

Hepatocellular carcinoma (HCC) is the predominant pathological type of liver cancer. Several therapeutic treatments, including sorafenib and regorafenib, have only modestly improved survival in patients with HCC. The aim of this study was to investigate the expression profiles and the regulation of competitive endogenous RNAs (ceRNAs) of the sorafenib-related target genes in HCC. Based on clinical information and expression profiles of HCC clinical samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, shared differentially expressed genes (DEGs) were analyzed and identified. Sorafenib-associated DEGs (SADs) were obtained by intersecting the DEGs with the sorafenib target genes from SuperTarget database. The expression patterns of SADs were verified in the Oncomine database. The biological functions of the SADs were annotated by gene set enrichment analysis (GSEA). In addition, a ceRNA network associated with SADs was constructed. Long non-coding RNAs (lncRNAs) in network that were significantly associated with overall survival were identified as prognosis of patients by Cox regression analysis. Finally, the expression levels of prognostic genes in HCC tissues and cell lines were verified using qRT-PCR. Gene expression differential analysis yielded a total of 146 common DEGs were obtained, including 21 upregulated and 125 downregulated DEGs. Among them, ten SADs were detected to be differentially expressed between tumor and normal tissues, including AXL, CYP2C19, CYP2C8, CYP2C9, CYP3A4, FGFR2, GMNN, PDGFRA, and TTK. GSEA analysis grouped them into three categories by function. The first category (CYP2C19, CYP2C8, CYP2C9 and CYP3A4) and second category (GMNN, TTK and EGER2) had the opposite roles in the enriched terms and pathways, while the third class (AXL and PDGFRA) has enrichment terms and pathways that intersect with those of the first and second categories. A ceRNA network associated with SADs was also constructed including 49 lncRNAs, 14 miRNAs, and 8 mRNAs. Three of these lncRNAs, SNHG7, GAS5 and HCP5, were found upregulated in HCC tissues and to be independent predictors in HCC patients. Significant correlations were found in expression between the prognostic lncRNAs and SADs. Ten SADs were systematically identified using expression data from HCC and normal tissues from TCGA and GEO datasets. GSEA analysis provided us with insight into the function of SADs. In the future, we will continue to explore the mechanisms of coordinated regulation of SADs-related prognostic lncRNAs and SADs at the ceRNA axis level and their potential functions in the development of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Sorafenibe/farmacologia , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Redes Reguladoras de Genes , MicroRNAs/genética , Expressão Gênica , Regulação Neoplásica da Expressão Gênica
10.
Sci Transl Med ; 15(706): eadg3358, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37494474

RESUMO

Organoid models have the potential to recapitulate the biological and pharmacotypic features of parental tumors. Nevertheless, integrative pharmaco-proteogenomics analysis for drug response features and biomarker investigation for precision therapy of patients with liver cancer are still lacking. We established a patient-derived liver cancer organoid biobank (LICOB) that comprehensively represents the histological and molecular characteristics of various liver cancer types as determined by multiomics profiling, including genomic, epigenomic, transcriptomic, and proteomic analysis. Proteogenomic profiling of LICOB identified proliferative and metabolic organoid subtypes linked to patient prognosis. High-throughput drug screening revealed distinct response patterns of each subtype that were associated with specific multiomics signatures. Through integrative analyses of LICOB pharmaco-proteogenomics data, we identified the molecular features associated with drug responses and predicted potential drug combinations for personalized patient treatment. The synergistic inhibition effect of mTOR inhibitor temsirolimus and the multitargeted tyrosine kinase inhibitor lenvatinib was validated in organoids and patient-derived xenografts models. We also provide a user-friendly web portal to help serve the biomedical research community. Our study is a rich resource for investigation of liver cancer biology and pharmacological dependencies and may help enable functional precision medicine.


Assuntos
Neoplasias Hepáticas , Proteogenômica , Humanos , Proteômica , Medicina de Precisão , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Organoides
11.
Cell Rep ; 42(7): 112690, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37384528

RESUMO

AKT kinase is a key regulator in cell metabolism and survival, and its activation is strictly modulated. Herein, we identify XAF1 (XIAP-associated factor) as a direct interacting protein of AKT1, which strongly binds the N-terminal region of AKT1 to block its K63-linked poly-ubiquitination and subsequent activation. Consistently, Xaf1 knockout causes AKT activation in mouse muscle and fat tissues and reduces body weight gain and insulin resistance induced by high-fat diet. Pathologically, XAF1 expression is low and anti-correlated with the phosphorylated p-T308-AKT signal in prostate cancer samples, and Xaf1 knockout stimulates the p-T308-AKT signal to accelerate spontaneous prostate tumorigenesis in mice with Pten heterozygous loss. And ectopic expression of wild-type XAF1, but not the cancer-derived P277L mutant, inhibits orthotopic tumorigenesis. We further identify Forkhead box O 1 (FOXO1) as a transcriptional regulator of XAF1, thus forming a negative feedback loop between AKT1 and XAF1. These results reveal an important intrinsic regulatory mechanism of AKT signaling.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias , Animais , Masculino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Carcinogênese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Autophagy ; 19(4): 1184-1198, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36037300

RESUMO

ABBREVIATIONS: cld-CASP3: cleaved caspase 3; cld-PARP: cleaved PARP; DTP: drug tolerant persister; GO: Gene Ontology; GTEx: The Genotype-Tissue Expression; HCC: hepatocellular carcinoma; HCQ: hydroxychloroquine; IC50: half maximal inhibitory concentration value; KEGG: Kyoto Encyclopedia of Genes and Genomes; LAPTM5: lysosomal protein transmembrane 5; NT: non-targeting; PDC: patient-derived primary cell lines; PDO: patient-derived primary organoid; TCGA: The Cancer Genome Atlas.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Inibidores de Poli(ADP-Ribose) Polimerases , Autofagia , Proteínas de Membrana/genética
14.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35863823

RESUMO

BACKGROUND: Immune microenvironment is well recognized as a critical regulator across cancer types, despite its complex roles in different disease conditions. Intrahepatic cholangiocarcinoma (iCCA) is characterized by a tumor-reactive milieu, emphasizing a deep insight into its immunogenomic profile to provide prognostic and therapeutic implications. METHODS: We performed genomic, transcriptomic, and proteomic characterization of 255 paired iCCA and adjacent liver tissues. We validated our findings through H&E staining (n=177), multiplex immunostaining (n=188), single-cell RNA sequencing (scRNA-seq) (n=10), in vitro functional studies, and in vivo transposon-based mouse models. RESULTS: Integrated multimodule data identified three immune subgroups with distinct clinical, genetic, and molecular features, designated as IG1 (immune-suppressive, 25.1%), IG2 (immune-exclusion, 42.7%), and IG3 (immune-activated, 32.2%). IG1 was characterized by excessive infiltration of neutrophils and immature dendritic cells (DCs). The hallmark of IG2 was the relatively higher tumor-proliferative activity and tumor purity. IG3 exhibited an enrichment of adaptive immune cells, natural killer cells, and activated DCs. These immune subgroups were significantly associated with prognosis and validated in two independent cohorts. Tumors with KRAS mutations were enriched in IG1 and associated with myeloid inflammation-dominated immunosuppression. Although tumor mutation burden was relatively higher in IG2, loss of heterozygosity in human leucocyte antigen and defects in antigen presentation undermined the recognition of neoantigens, contributing to immune-exclusion behavior. Pathological analysis confirmed that tumor-infiltrating lymphocytes and tertiary lymphoid structures were both predominant in IG3. Hepatitis B virus (HBV)-related samples tended to be under-represented in IG1, and scRNA-seq analyses implied that HBV infection indeed alleviated myeloid inflammation and reinvigorated antitumor immunity. CONCLUSIONS: Our study elucidates that the immunogenomic traits of iCCA are intrinsically heterogeneous among patients, posing great challenge and opportunity for the application of personalized immunotherapy.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Vírus da Hepatite B , Humanos , Inflamação , Camundongos , Proteômica , Microambiente Tumoral
15.
Cancer Cell ; 40(1): 70-87.e15, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34971568

RESUMO

We performed proteogenomic characterization of intrahepatic cholangiocarcinoma (iCCA) using paired tumor and adjacent liver tissues from 262 patients. Integrated proteogenomic analyses prioritized genetic aberrations and revealed hallmarks of iCCA pathogenesis. Aflatoxin signature was associated with tumor initiation, proliferation, and immune suppression. Mutation-associated signaling profiles revealed that TP53 and KRAS co-mutations may contribute to iCCA metastasis via the integrin-FAK-SRC pathway. FGFR2 fusions activated the Rho GTPase pathway and could be a potential source of neoantigens. Proteomic profiling identified four patient subgroups (S1-S4) with subgroup-specific biomarkers. These proteomic subgroups had distinct features in prognosis, genetic alterations, microenvironment dysregulation, tumor microbiota composition, and potential therapeutics. SLC16A3 and HKDC1 were further identified as potential prognostic biomarkers associated with metabolic reprogramming of iCCA cells. This study provides a valuable resource for researchers and clinicians to further identify molecular pathogenesis and therapeutic opportunities in iCCA.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Fígado/patologia , Proteogenômica , Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Humanos , Mutação/genética , Prognóstico , Proteogenômica/métodos , Proteômica , Microambiente Tumoral/imunologia
16.
Front Cell Dev Biol ; 9: 684885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34164402

RESUMO

p62/SQSTM1 (sequestosome-1) is a key protein involved in multiple cellular bioprocesses including autophagy, nutrient sensing, cell growth, cell death, and survival. Therefore, it is implicated in human diseases such as obesity and cancer. Here, we show that the CUL5-ASB6 complex is a ubiquitin E3 ligase complex mediating p62 ubiquitination and degradation. Depletion of CUL5 or ASB6 induced p62 accumulation, and overexpression of ASB6 promoted ubiquitination and degradation of p62. Functionally, ASB6 overexpression can inhibit the proliferation of MEF and hepatocellular carcinoma cells by reducing p62 protein level, and impair the occurrence of autophagy. Overall, our study identified a new molecular mechanism regulating p62 stability, which may provide additional insights for understanding the delicate control of p62 and cell proliferation-autophagy control in physiological and pathological settings.

17.
Medicine (Baltimore) ; 99(31): e21336, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32756120

RESUMO

RATIONALE: Hepatic alveolar echinococcosis (HAE) presents a high pathogenicity and case fatality rate. The main treatment for HAE is surgical resection. Giant lesions in the liver and invasion of the pathogen into the retrohepatic inferior vena cava are usually associated with a poor prognosis when radical resection cannot be performed. PATIENT CONCERNS: A 56-year-old man who underwent hydatidectomy 7 years prior noted a recurrence of HAE. He was subsidized and admitted to our hospital for the purpose of surgical treatment. DIAGNOSIS: By computed tomography, angiography and three-dimensional (3D) computed tomography reconstruction images, multiple, giant HAE with 75% stenosis was confirmed. INTERVENTIONS: With the 3D visualization technique, we designed the surgical plan and performed radical resection of the lesions, including the invaded inferior vena cava, and maximized retention of normal liver tissue. The abdominal aorta of an organ donor was used for vascular allograft reconstruction. OUTCOMES: The patient recovered gradually after the operation. He was followed up for 3 months, and the reconstructed vein patency was good. LESSONS: The 3D visualization technique combined with a blood vessel allograft allowed us to expand indications for radical resection of extensive HAE.


Assuntos
Equinococose Hepática/cirurgia , Hepatectomia/métodos , Enxerto Vascular/métodos , Aloenxertos/transplante , Aorta Abdominal/cirurgia , Equinococose Hepática/diagnóstico por imagem , Humanos , Imageamento Tridimensional/métodos , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Veia Cava Inferior/cirurgia
18.
Exp Cell Res ; 395(2): 112219, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32763246

RESUMO

Increasing evidence has shown that abnormal expression of XPO5 is found in many human cancers and acts as an oncoprotein in certain cancers. However, its functional role in hepatocellular carcinoma (HCC) remains unexplored. In our study, we found that XPO5 was highly expressed in HCC, which was associated with SUMO modification. Moreover, we found that XPO5 was SUMOylated by SUMO2 at K125. Functional experiments revealed that XPO5 SUMOylation could promote MHCC97H cell proliferation, migration and invasion. In addition, we found that the nuclear export of pre-miR-3184 was suppressed by SUMOylated XPO5. Moreover, PLCB1 was identified as the common target of miR-3184-5p and miR-3184-3p. The suppressed phenotype induced by miR-3184-5p and miR-3184-3p could be rescued by overexpression of PLCB1. Bioinformatics analysis showed that PLCB1 expression had a negative relationship with HCC patient survival. The inhibitory effects of MHCC97H cells resulted from abnormal XPO5 SUMO modification could be blocked by miR-3184 inhibitor or PLCB1 overexpression. In conclusion, our findings demonstrate a novel mechanism of XPO5 in HCC, that is, the SUMOylated XPO5 acts as an "oncogenic" role in MHCC97H cells proliferation, migration and invasion by controlling the nuclear-cytoplasm transportation of miR-3184, thus up-regulating PLCB1 expression.


Assuntos
Carioferinas/genética , Neoplasias Hepáticas/genética , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/genética , Fosfolipase C beta/genética , Sumoilação/genética , Sumoilação/fisiologia
19.
J BUON ; 25(3): 1383-1389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32862580

RESUMO

PURPOSE: Liver cancer is one of the most common and highly malignant cancers of the digestive system. The main aim of the present research work was to investigate the anticancer action of rosmarinic acid - a naturally occurring plant secondary metabolite. We also investigated its effects on cell apoptosis, caspase activation, cell migration and cell invasion. METHODS: Cell viability of Hep-G2 liver cancer cells was evaluated by CCK-8 assay while apoptotic studies were carried out by fluorescence microscopy using Hoechst, acridine orange (AO)/ethidium bromide (EB) and Comet assays as well as using annexin-v/propidium iodide (PI) assay for apoptosis quantification. Western blot assay was used to study the effects of rosmarinic acid on apoptosis-related protein expressions including Bax, Bcl-2 and various caspases. In vitro wound healing assay was used to evaluate the effects on cell migration while transwell chambers assay with Matrigel was used to assess the effects of rosmarinic acid on cell invasion. RESULTS: Rosmarinic acid caused significant reduction in the viability of the human Hep-G2 liver carcinoma cells in a dose-dependent manner, exhibiting an IC50 of 14 µM in cancer cells. The AO/EB staining assay showed that rosmarinic acid suppressed the viability of cancer cells via induction of apoptotic cell death which was associated with rise in Bax and decrease in Bcl-2 levels. DAPI staining results also confirmed that rosmarinic acid induced apoptosis. The apoptotic cells increased from 5.8% in control to 24.68% at 28 µM concentration of rosmarinic acid. Rosmarinic acid also caused activation of caspase-3 and 9 along with suppressing liver cancer cell migration and invasion. CONCLUSIONS: The current study shows that rosmarinic acid has a potential to inhibit in vitro cancer cell growth in Hep-G2 cells by triggering apoptosis, caspase activation and suppressing cell migration and invasion and as such this molecule could be developed as a possible anticancer agent provided further studies are carried out.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Caspases/metabolismo , Movimento Celular/efeitos dos fármacos , Cinamatos/farmacologia , Depsídeos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Rosmarínico
20.
J Hepatol ; 72(5): 896-908, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31887370

RESUMO

BACKGROUND & AIMS: The presence of multifocal tumors, developed either from intrahepatic metastasis (IM) or multicentric occurrence (MO), is a distinct feature of hepatocellular carcinoma (HCC). Immunogenomic characterization of multifocal HCC is important for understanding immune escape in different lesions and developing immunotherapy. METHODS: We combined whole-exome/transcriptome sequencing, multiplex immunostaining, immunopeptidomes, T cell receptor (TCR) sequencing and bioinformatic analyses of 47 tumors from 15 patients with HCC and multifocal lesions. RESULTS: IM and MO demonstrated distinct clonal architecture, mutational spectrum and genetic susceptibility. The immune microenvironment also displayed spatiotemporal heterogeneity, such as less T cell and more M2 macrophage infiltration in IM and higher expression of inhibitory immune checkpoints in MO. Similar to mutational profiles, shared neoantigens and TCR repertoires among tumors from the same patients were abundant in IM but scarce in MO. Combining neoantigen prediction and immunopeptidomes identified T cell-specific neoepitopes and achieved a high verification rate in vitro. Immunoediting mainly occurred in MO but not IM, due to the relatively low immune infiltration. Loss of heterozygosity of human leukocyte antigen (HLA) alleles, identified in 17% of multifocal HCC, hampered the ability of major histocompatibility complex to present neoantigens, especially in IM. An integrated analysis of Immunoscore, immunoediting, TCR clonality and HLA loss of heterozygosity in each tumor could stratify patients into 2 groups based on whether they have a high or low risk of recurrence (p = 0.038). CONCLUSION: Our study comprehensively characterized the genetic structure, neoepitope landscape, T cell profile and immunoediting status that collectively shape tumor evolution and could be used to optimize personalized immunotherapies for multifocal HCC. LAY SUMMARY: Immunogenomic features of multifocal hepatocellular carcinoma (HCC) are important for understanding immune-escape mechanisms and developing more effective immunotherapy. Herein, comprehensive immunogenomic characterization showed that diverse genomic structures within multifocal HCC would leave footprints on the immune landscape. Only a few tumors were under the control of immunosurveillance, while others evaded the immune system through multiple mechanisms that led to poor prognosis. Our study revealed heterogeneous immunogenomic landscapes and immune-constrained tumor evolution, the understanding of which could be used to optimize personalized immunotherapies for multifocal HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Primárias Múltiplas/genética , Neoplasias Primárias Múltiplas/imunologia , Evasão Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos/imunologia , Feminino , Predisposição Genética para Doença , Antígenos HLA/genética , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia , Receptores de Antígenos de Linfócitos T/genética , Transcriptoma , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA