Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 271(Pt 1): 132520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772463

RESUMO

Blocking the tumor nutrient supply through angiogenic inhibitors is an effective treatment approach for malignant tumors. However, using angiogenic inhibitors alone may not be enough to achieve a significant tumor response. Therefore, we recently designed a universal drug delivery system combining chemotherapy and anti-angiogenic therapy to target tumor cells while minimizing drug-related side effects. This system (termed as PCCE) is composed of biomaterial chondroitin sulfate (CS), the anti-angiogenic peptide ES2, and paclitaxel (PTX), which collectively enhance antitumor properties. Interestingly, the PCCE system is conferred exceptional cell membrane permeability due to inherent characteristics of CS, including CD44 receptor-mediated endocytosis. The PCCE could respond to the acidic and high glutathione conditions, thereby releasing PTX and ES2. PCCE could effectively inhibit the proliferation, migration, and invasion of tumor cells and cause apoptosis, while PCCE can affect the endothelial cells tube formation and exert anti-angiogenic function. Consistently, more potent in vivo antitumor efficacy and non-toxic sides were demonstrated in B16F10 xenograft mouse models. PCCE can achieve excellent antitumor activity via modulating angiogenic and apoptosis-related factors. In summary, we have successfully developed an intelligent and responsive CS-based nanocarrier known as PCCE for delivering various antitumor drugs, offering a promising strategy for treating malignant tumors.


Assuntos
Inibidores da Angiogênese , Sulfatos de Condroitina , Nanopartículas , Paclitaxel , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Paclitaxel/química , Paclitaxel/uso terapêutico , Animais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/administração & dosagem , Humanos , Camundongos , Nanopartículas/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/química , Movimento Celular/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem
2.
Int J Biol Macromol ; 262(Pt 1): 129671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423906

RESUMO

Tumor growth and metastasis heavily rely on angiogenesis, crucial for solid tumor development. Inhibiting angiogenesis associated with tumors emerges as a potent therapeutic approach. Our previous work synthesized the chondroitin sulfate-modified antiangiogenic peptide CS-ES2-AF (CS-EA), which exhibited better antiangiogenic activity, longer half-life, and more robust targeting. In this work, we further evaluated the stability in vitro, cellular uptake mechanism, cell apoptosis mechanism, antitumor activity in vivo, and safety of CS-EA. The stability of CS-EA was consistently superior to that of EA at different temperatures and in different pH ranges. Furthermore, CS-EA mainly entered EAhy926 cells through the clathrin-mediated endocytosis pathway. CS-EA inhibited endothelial cell proliferation, and induced cell apoptosis through downregulating the Bcl-2, reducing mitochondria membrane potential, upregulating cytochrome c, Caspase 3, and reactive oxygen species levels. CS-EA showed better antitumor activity in the B16 xenografted tumor model, with a tumor inhibition rate 1.92 times higher than EA. Simultaneously, it was observed that CS-EA did not cause any harmful effects on the vital organs of the mice. These findings indicate that CS-EA holds significant promise for the treatment of tumors.


Assuntos
Sulfatos de Condroitina , Neoplasias , Animais , Camundongos , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Linhagem Celular Tumoral
3.
Heliyon ; 10(1): e23531, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192769

RESUMO

Oxidative stress plays a crucial role in the development of osteoporosis. In this study, it was observed that donkey bone collagen (DC) at a concentration of 500 µg/mL scavenged 17.89 % of 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radicals, indicating its antioxidant properties. Additionally, when an oxidative damage osteoblast model was created using H2O2, 100 µg/mL DC demonstrated the ability to enhance cell survival by 27.31 %. Furthermore, 50 µg/mL DC increased the intracellular differentiation marker alkaline phosphatase (ALP) level by 62.65 %. Additionally, the study revealed that DC significantly increased the expression of osteoporosis-related factors in serum and effectively restored the abnormal structure of spongy bone in mice osteoporosis model. Peptides (GGWFL, ANLGPA, and GWFK) isolated from DC through gastrointestinal digestion and subsequent enzymatic purification in vitro demonstrated the ability to safeguard osteoblasts from H2O2-induced damage by reducing intracellular reactive oxygen species (ROS). This protection resulted in enhanced cell survival and promoted osteoblast differentiation. This investigation underscores that DC can shield oxidative damage osteoblast model from oxidative stress, ameliorate osteoporosis, and enhance bone density in mice osteoporosis model. These findings suggest various DC applications in the food and medicine industries.

4.
Carbohydr Polym ; 320: 121255, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659829

RESUMO

Neovascularization is crucial to the occurrence and progression of tumors, and the development of antiangiogenic drugs has essential theoretical value and clinical significance. However, antiangiogenesis therapy alone cannot meet the needs of tumor therapy. Meanwhile, polysaccharides are ideal drug carriers with promising applications in drug modification and delivery. In this research, we developed a novel redox and acid sensitive nanodrug (CDDP-CS-Cys-EA, CCEA) composed of chondroitin sulfate (CS), antiangiogenic peptide (endostatin2-alft1, EA) and chemotherapeutic drug (cisplatin, CDDP). CCEA exhibited redox and acid responsiveness, better blood hemocompatibility (hemolysis rate < 5 %), the ability to target tumors (CD44-mediated endocytosis), and strong antiangiogenesis and antitumor characteristics in vitro. Moreover, CCEA showed excellent antitumor activity and low toxicity in B16 xenograft mice. It also has been confirmed that CCEA induced tumor cell apoptosis through promoting the expression of Bax, suppressing the expression of Bcl-2, decreasing mitochondrial membrane potential, releasing cytochrome C (Cyto C), and enhancing the activities of Caspase 9 and Caspase 3. The results of this paper provided a theoretical basis and insight for the development of antitumor drugs.


Assuntos
Melanoma , Nanopartículas , Humanos , Animais , Camundongos , Sulfatos de Condroitina/farmacologia , Melanoma/tratamento farmacológico , Imunoterapia , Apoptose , Cisplatino , Nanopartículas/uso terapêutico , Receptores de Hialuronatos
5.
Int J Biol Macromol ; 240: 124398, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059277

RESUMO

Chitin is a natural polymeric polysaccharide extracted from marine crustaceans, and chitosan is obtained by removing part of the acetyl group (usually more than 60 %) in chitin's structure. Chitosan has attracted wide attention from researchers worldwide due to its good biodegradability, biocompatibility, hypoallergenic and biological activities (antibacterial, immune and antitumor activities). However, research has shown that chitosan does not melt or dissolve in water, alkaline solutions and general organic solvents, which greatly limits its application range. Therefore, researchers have carried out extensive and in-depth chemical modification of chitosan and prepared a variety of chitosan derivatives, which have expanded the application field of chitosan. Among them, the most extensive research has been conducted in the pharmaceutical field. This paper summarizes the application of chitosan and chitosan derivatives in medical materials over the past five years.


Assuntos
Quitosana , Quitosana/química , Quitina/química , Polissacarídeos , Antibacterianos
6.
Small ; 19(27): e2206491, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36965026

RESUMO

The progression and metastasis of solid tumors rely strongly on neovascularization. However, angiogenesis inhibitors alone cannot meet the needs of tumor therapy. This study prepared a new drug conjugate (PTX-GSHP-CYS-ES2, PGCE) by combining polysaccharides (heparin without anticoagulant activity, GSHP), chemotherapeutic drugs (paclitaxel, PTX), and antiangiogenic drugs (ES2). Furthermore, a tumor-targeted prodrug nanoparticle delivery system is established. The nanoparticles appear to accumulate in the mitochondrial of tumor cells and achieve ES2 and PTX release under high glutathione and acidic environment. It has been confirmed that PGCE inhibited the expression of multiple metastasis-related proteins by targeting the tumor cell mitochondrial apparatus and disrupting their structure. Furthermore, PGCE nanoparticles inhibit migration, invasion, and angiogenesis in B16F10 tumor-bearing mice and suppress tumor growth and metastasis in vitro. Further in vitro and in vivo experiments show that PGCE has strong antitumor growth and metastatic effects and exhibits efficient anti-angiogenesis properties. This multi-targeted nanoparticle system potentially enhances the antitumor and anti-metastatic effects of combination chemotherapy and antiangiogenic drugs.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Animais , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Heparina , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Nanopartículas/química , Glicóis , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Camundongos Endogâmicos BALB C
7.
Front Oncol ; 11: 661184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336656

RESUMO

The survival rate of breast cancer (BC) patients remains poor, thus the identification of safe and effective new drugs is crucial to improve therapeutic outcomes and overall survival. Pinocembrin (PCB), a pharmacologically active ingredient of Pinus heartwood, Eucalyptus, Euphorbia, Populus, and Sparattosperma leucanthum, has been widely applied for the treatment of various diseases and possesses anticancer activities. In vitro assays were performed to investigate the antiproliferation and antimetastasis activities of PCB in BC cells. A tumorigenesis assay with the use of murine BC models was performed to assess the antiproliferation activities of PCB in vivo. Moreover, the molecular mechanisms underlying the anticancer activities of PCB in BC cells were explored. The results showed that the anti-inhibitory and antiproliferation activities of PCB in BC might involve cell cycle (G2/M phase) arrest and apoptosis. PCB downregulated the expression levels of proteins involved in cell cycle progression and apoptosis, including cyclinB1, Cdc2, PARP1, Bcl-2, and survivin, and upregulated protein levels of cleaved PARP1, cleaved caspase3, cleaved caspase9, and BAX. In a murine subcutaneous tumor model, PCB suppressed the growth of MCF-7 cells in vivo. Low concentrations of PCB also significantly inhibited the migration and invasion abilities of BC cells. Mechanistically, PCB administration was correlated to suppression of the PI3K/AKT signaling pathway. Inhibition of the proliferation of BC cells by PCB involved cell cycle (G2/M phase) arrest and apoptosis in vitro and in vivo. Low concentrations of PCB also significantly inhibited the migration and invasion abilities of BC cells. These findings suggest that PCB might be an effective agent for treatment of BC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA