RESUMO
Chronic neutrophilic leukemia (CNL) is a rare type of myeloproliferative neoplasm (MPN). Due to its nonspecific clinical symptoms and lack of specific molecular markers, it was previously difficult to distinguish it from other diseases with increased neutrophils. However, the discovery of the CSF3R mutation in CNL 10 years ago and the update of the diagnostic criteria by the World Health Organization (WHO) in 2016 brought CNL into a new era of molecular diagnosis. Next-generation sequencing (NGS) technology has led to the identification of numerous mutant genes in CNL. While CSF3R is commonly recognized as the driver mutation of CNL, other mutations have also been detected in CNL using NGS, including mutations in other signaling pathway genes (CBL, JAK2, NARS, PTPN11) and chromatin modification genes (ASXL1, SETBP1, EZH2), DNA methylation genes (DNMT3A, TET2), myeloid-related transcription factor genes (RUNX1, GATA2), and splicing and RNA metabolism genes (SRSF2, U2AF1). The coexistence of these mutated genes and CSF3R mutations, as well as the different evolutionary sequences of clones, deepens the complexity of CNL molecular biology. The purpose of this review is to summarize the genetic research findings of CNL in the last decade, focusing on the common mutated genes in CNL and their clinical significance, as well as the clonal evolution pattern and sequence of mutation acquisition in CNL, to provide a basis for the appropriate management of CNL patients.
RESUMO
BACKGROUND: Study of the molecular biological characteristics of chronic neutrophilic leukemia complicated with plasma cell disorder (CNL-PCD) and lymphocytic proliferative disease (CNL-LPD). METHODS: The clinical data of a patient with chronic neutrophilic leukemia complicated with monoclonal gammopathy of undetermined significance (CNL-MGUS) in our hospital were reviewed, and the Chinese and/or English literature about CNL-PCD and CNL-LPD in PubMed and the Chinese database CNKI in the past 10 years was searched to analyze the molecular biological characteristics of this disease. RESULTS: A 73-year-old male had persistent leukocytosis for 18 months. The white blood cell count was 46.77 × 109/L and primarily composed of mature neutrophils; hemoglobin: 77 g/L; platelet count: 189 × 109/L. Serum immunofixation electrophoresis showed IgG-λ monoclonal M protein. A CT scan showed splenomegaly. Next-generation sequencing (NGS) showed that CSF3R T618I, ASXL1 and RUNX1 mutations were positive. It was diagnosed as CNL-MGUS. We summarized 10 cases of CNL-PCD and 1 case of CNL-LPD who underwent genetic mutation detection reported in the literature. The CSF3R mutational frequency (7/11, 63.6%) was lower than that of isolated CNL. The ASXL1 mutations were all positive (3/3), which may represent a poor prognostic factor. The SETBP1 mutation may promote the progression of CNL-PCD. We also found JAK2, RUNX1, NRAS, etc. in CNL-PCD. CONCLUSIONS: Chronic neutrophilic leukemia may be more inclined to coexist with plasma cell disorder. The CSF3R mutation in CNL-PCD is still the most common mutated gene compared with isolated CNL. Mutations in SETBP1 and ASXL1 may be poor prognostic factors for CNL-PCD.