Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37447472

RESUMO

Polypropylene (PP) has gained attention in the industry as an environmentally friendly material. However, its electrical properties are compromised due to space charge accumulation during operation, limiting its application in high-voltage DC cable insulation. This study investigates the effect and mechanism of SiO2 with a DDS surface hydrophobic treatment on space charge suppression and the electrical properties of PP composites. The PP matrix was doped with SiO2 nanostructures, both with a DDS surface hydrophobic treatment and untreated as a control group. The functional group structure and dispersion of nanostructured SiO2 in the matrix were characterized. The findings reveal that the incorporation of SiO2 nanostructures effectively mitigates charge accumulation in PP composites. However, a high concentration of unsurfaced nanostructures tends to agglomerate, resulting in inadequate space charge suppression and a diminished DC breakdown field strength. Nonetheless, surface treatment improves the dispersion of SiO2 within the matrix. Notably, the composite containing 1.0 wt% of surface hydrophobic SiO2 exhibits the least space charge accumulation. Compared to the base material PP, the average charge density is reduced by 83.9% after the 1800 s short-circuit discharges. Moreover, its DC breakdown field strength reaches 3.45 × 108 V/m, surpassing pure PP by 19.4% and untreated SiO2/PP composites of the same proportion by 24.0%.

2.
Polymers (Basel) ; 14(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890539

RESUMO

Polypropylene (PP) has received more and more attention in the field of insulating materials as a recyclable thermoplastic. To further enhance the applicability of polypropylene in the field of insulation, it needs to be modified to improve its electrical properties. In this paper, the impact mechanism of AEROXIDE® TiO2 P 90 (P90) and AEROXIDE® TiO2 NKT 90 (NKT90) as nanosized hydrophilic and hydrophobic fumed titania from Evonik on the electrical properties of PP was studied mainly through the crystallization behavior and space charge distribution of PP nanocomposites. Two kinds of nanostructured TiO2 were melt-blended with PP according to four types of contents. The results of alternating current (AC)/direct current (DC) breakdown field strength of the two materials were explained by studying the microstructure and space charge characteristics of the nanocomposites. Among them, hydrophilic nanostructured TiO2 are agglomerated when the content is low. The spherulite size of the nanocomposite is large, the space charge suppression ability is poor, the charge is easy to penetrate into the pattern, and the AC/DC breakdown field strength is significantly reduced. However, hydrophobic nanostructured TiO2 has better dispersion in PP, smaller spherulites, more regular arrangement, and less space charge accumulation. The charge penetration occurs only when the nanostructured material content is 2 wt%, and the AC/DC breakdown strength increases by 20.8% at the highest when the nanostructured material content is 1 wt%. It provides the possibility to prepare recyclable high-performance DC PP composite insulating materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA