Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496556

RESUMO

Potential systemic factors contributing to aging-associated breast cancer (BC) remain elusive. Here, we reveal that the polyploid giant cells (PGCs) that contain more than two sets of genomes prevailing in aging and cancerous tissues constitute 5-10% of healthy female bone marrow mesenchymal stromal cells (fBMSCs). The PGCs can repair DNA damage and stimulate neighboring cells for clonal expansion. However, dying PGCs in advanced-senescent fBMSCs can form "spikings" which are then separated into membraned mtDNA-containing vesicles (Senescent PGC-Spiking Bodies; SPSBs). SPSB-phagocytosed macrophages accelerate aging with diminished clearance on BC cells and protumor M2 polarization. SPSB-carried mitochondrial OXPHOS components are enriched in BC of elder patients and associated with poor prognosis. SPSB-incorporated breast epithelial cells develop aggressive characteristics and PGCs resembling the polyploid giant cancer cells (PGCCs) in clonogenic BC cells and cancer tissues. These findings highlight an aging BMSC-induced BC risk mediated by SPSB-induced macrophage dysfunction and epithelial cell precancerous transition. SIGNIFICANCE: Mechanisms underlying aging-associated cancer risk remain unelucidated. This work demonstrates that polyploid giant cells (PGCs) in bone marrow mesenchymal stromal cells (BMSCs) from healthy female bone marrow donors can boost neighboring cell proliferation for clonal expansion. However, the dying-senescent PGCs in the advanced-senescent fBMSCs can form "spikings" which are separated into mitochondrial DNA (mtDNA)-containing spiking bodies (senescent PGC-spiking bodies; SPSBs). The SPSBs promote macrophage aging and breast epithelial cell protumorigenic transition and form polyploid giant cancer cells. These results demonstrate a new form of ghost message from dying-senescent BMSCs, that may serve as a systemic factor contributing to aging-associated immunosuppression and breast cancer risk.

2.
Front Pharmacol ; 12: 781033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899346

RESUMO

Alantolactone (ALT) is a natural compound extracted from Chinese traditional medicine Inula helenium L. with therapeutic potential in the treatment of various diseases. Recently, in vitro and in vivo studies have indicated cytotoxic effects of ALT on various cancers, including liver cancer, colorectal cancer, breast cancer, etc. The inhibitory effects of ALT depend on several cancer-associated signaling pathways and abnormal regulatory factors in cancer cells. Moreover, emerging studies have reported several promising strategies to enhance the oral bioavailability of ALT, such as combining ALT with other herbs and using ALT-entrapped nanostructured carriers. In this review, studies on the anti-tumor roles of ALT are mainly summarized, and the underlying molecular mechanisms of ALT exerting anticancer effects on cells investigated in animal-based studies are also discussed.

3.
Int J Gen Med ; 14: 7133-7143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737608

RESUMO

PURPOSE: To explore the molecular profiles of transcriptional enhanced associate domain (TEAD) family in ovarian serous carcinoma (OSC). METHODS: In this study, we use bioinformatics methods including GEPIA, GE-mini, Oncomine 3.0, Kaplan-Meier plotter, cBioPortal, WebGestalt, TIMER2.0 and DiseaseMeth2.0, and in vitro experimental RT-PCR to assess the expression profiles and prognostic significance of TEAD family in OSC. RESULTS: According to the bioinformatics analysis, TEAD family was abnormally expressed in OSC. In terms of prognosis, Kaplan-Meier plotter indicated that OSC patients with high level of TEAD4 showed poor overall survival (OS), progression-free survival (PFS) and post progression survival (PPS). TEAD family also had significantly diagnostic values for OSC patients. Tumor Immune Estimation Resource (TIMER) algorithm indicated that TEAD family was significantly associated with different types of infiltrating immune cells, including B cells, macrophages, dendritic cells, neutrophils, CD8+ T cells and CD4+ T cells. Gene set enrichment analysis of TEAD family-associated coexpression genes was further explored. In in vitro experiments, the RT-PCR results showed the upregulated TEAD2/4 in OSC tissues and cells (A2780 and TOV112D). Moreover, decreased expression of TEAD2 could induce the ferroptosis through increasing the ROS accumulation. CONCLUSION: Thus, TEAD family correlated with the diagnosis, prognosis and immune infiltration in OSC. These results could provide comprehensive understanding of TEAD family in the diagnosis and prognosis of OSC patients.

4.
Front Immunol ; 12: 719175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603293

RESUMO

Ferroptosis is an iron-dependent cell death process that plays important regulatory roles in the occurrence and development of cancers, including hepatocellular carcinoma (HCC). Moreover, the molecular events surrounding aberrantly expressed long non-coding RNAs (lncRNAs) that drive HCC initiation and progression have attracted increasing attention. However, research on ferroptosis-related lncRNA prognostic signature in patients with HCC is still lacking. In this study, the association between differentially expressed lncRNAs and ferroptosis-related genes, in 374 HCC and 50 normal hepatic samples obtained from The Cancer Genome Atlas (TCGA), was evaluated using Pearson's test, thereby identifying 24 ferroptosis-related differentially expressed lncRNAs. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression model were used to construct and validate a prognostic risk score model from both TCGA training dataset and GEO testing dataset (GSE40144). A nine-lncRNA-based signature (CTD-2033A16.3, CTD-2116N20.1, CTD-2510F5.4, DDX11-AS1, LINC00942, LINC01224, LINC01231, LINC01508, and ZFPM2-AS1) was identified as the ferroptosis-related prognostic model for HCC, independent of multiple clinicopathological parameters. In addition, the HCC patients were divided into high-risk and low-risk groups according to the nine-lncRNA prognostic signature. The gene set enrichment analysis enrichment analysis revealed that the lncRNA-based signature might regulate the HCC immune microenvironment by interfering with tumor necrosis factor α/nuclear factor kappa-B, interleukin 2/signal transducers and activators of transcription 5, and cytokine/cytokine receptor signaling pathways. The infiltrating immune cell subtypes, such as resting memory CD4(+) T cells, follicular helper T cells, regulatory T cells, and M0 macrophages, were all significantly different between the high-risk group and the low-risk group as indicated in Spearman's correlation analysis. Moreover, a substantial increase in the expression of B7H3 immune checkpoint molecule was found in the high-risk group. Our findings provided a promising insight into ferroptosis-related lncRNAs in HCC and a personalized prediction tool for prognosis and immune responses in patients.


Assuntos
Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/mortalidade , Ferroptose/genética , Imunidade/genética , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/mortalidade , RNA Longo não Codificante , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Peroxidação de Lipídeos/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC
5.
Sci Rep ; 11(1): 18366, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526571

RESUMO

Alterations of mitogen-activated protein kinase kinase 1 (MEK1) are commonly associated with tumorigenesis, and MEK1 is thought to be a suitable targeted therapy for various cancers. However, abnormal MEK1 alterations and their relevant clinical implications are unknown. Our research comprehensively analyzed the MEK1 alteration spectrum and provided novel insight for targeted therapies. There were 7694 samples covering 32 types of cancer from The Cancer Genome Atlas (TCGA) database. They were used to conduct an integrative analysis of MEK1 expression, alterations, functional impacts and clinical significance. There was a dramatic difference in the alteration frequency and distribution and clinical implications in 32 types of cancer from the TCGA. Skin cutaneous melanoma (SKCM) has the most alterations and has therapeutic targets located in the protein kinase domain, and the growing expression of SKCM is positively related to patient prognosis. MEK1 expression in lung adenocarcinoma (LUAD), kidney renal papillary cell carcinoma (KIRP), esophageal carcinoma (ESCA) and liver hepatocellular carcinoma (LIHC) is decreased, which is associated with better prognosis, while MEK1 expression in thymoma (THYM), stomach adenocarcinoma (STAD), kidney renal clear cell carcinoma (KIRC), testicular germ cell tumors (TGCTs) and head and neck squamous cell carcinoma (HNSC) is increased, which is associated with better prognosis. Mesothelioma (MESO) has the second highest alterations but has no therapy targets. This study provided a great and detailed interpretation of MEK1 expression, alterations and clinical implications in 32 types of cancer and reminded us to fill the gap in MEK1 research from a new perspective.


Assuntos
MAP Quinase Quinase 1/genética , Mutação , Neoplasias/genética , Bases de Dados Genéticas , Humanos , MAP Quinase Quinase 1/química , MAP Quinase Quinase 1/metabolismo , Neoplasias/patologia , Domínios Proteicos
6.
Mol Med Rep ; 24(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165164

RESUMO

In early pregnancy, fetal skin wounds can heal quickly and undergo a transition period from scarless healing to scar formation. The aim of the present study was to identify potential biomarkers associated with scarless repair of cleft lips, in order to determine the intrinsic factors leading to scar formation in embryonic tissue. A stable model of cleft lip was established using microsurgery by constructing a wedge­shaped cleft lip­like defect in fetal rats at gestational age (GA) 16.5 and GA18.5. The GA16.5 and GA18.5 groups were used to model scarless healing and scar formation, respectively. The fetuses were returned to the uterus following surgery, then removed 72 h after the procedure. Macroscopic observation of the cleft defect and histological examination were carried out. Reverse transcription­quantitative (RT­q) PCR and parallel reaction monitoring (PRM) were used to detect mRNA and protein expression levels, respectively. The upper­left lip completely healed 72 h after surgery in the GA16.5 group of fetal rats. However, this was not the case in the GA18.5 group. Histological examination indicated new follicles visible under the epidermis of the scarless group (GA16.5). Scarring was visible on the upper­left cleft lip wound of the fetal rats in the GA18.5 group. The expression of some growth and pro­inflammatory factors, including TNF­α, were also different between two groups. Label­free quantification was used to identified differentially expressed proteins and five differentially expressed proteins (Smad4, Fabp5, S100a4, S100a8 and S100a9) were identified. The relative expression of these molecules at the mRNA and protein levels were measured using RT­qPCR and PRM. These molecules may represent potential biomarkers for the scarless repair of fetal rat cleft lip wounds.


Assuntos
Fenda Labial/genética , Fenda Labial/metabolismo , Feto/metabolismo , Cicatrização/genética , Animais , Cicatriz , Fenda Labial/patologia , Fenda Labial/cirurgia , Feminino , Expressão Gênica , Lábio/metabolismo , Lábio/patologia , Gravidez , Proteômica , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
7.
FASEB J ; 33(5): 5836-5849, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753093

RESUMO

We have established early-gestation chorionic villus-derived placenta mesenchymal stromal cells (PMSCs) as a potential treatment for spina bifida (SB), a neural tube defect. Our preclinical studies demonstrated that PMSCs have the potential to cure hind limb paralysis in the fetal lamb model of SB via a paracrine mechanism. PMSCs exhibit neuroprotective function by increasing cell number and neurites, as shown by indirect coculture and direct addition of PMSC-conditioned medium to the staurosporine-induced apoptotic human neuroblastoma cell line, SH-SY5Y. PMSC-conditioned medium suppressed caspase activity in apoptotic SH-SY5Y cells, suggesting that PMSC secretome contributes to neuronal survival after injury. As a part of PMSC secretome, PMSC exosomes were isolated and extensively characterized; their addition to apoptotic SH-SY5Y cells mediated an increase in neurites, suggesting that they exhibit neuroprotective function. Proteomic and RNA sequencing analysis revealed that PMSC exosomes contain several proteins and RNAs involved in neuronal survival and development. Galectin 1 was highly expressed on the surface of PMSCs and PMSC exosomes. Preincubation of exosomes with anti-galectin 1 antibody decreased their neuroprotective effect, suggesting that PMSC exosomes likely impart their effect via binding of galectin 1 to cells. Future studies will include in-depth analyses of the role of PMSC exosomes on neuroprotection and their clinical applications.-Kumar, P., Becker, J. C., Gao, K., Carney, R. P., Lankford, L., Keller, B. A., Herout, K., Lam, K. S., Farmer, D. L., Wang, A. Neuroprotective effect of placenta-derived mesenchymal stromal cells: role of exosomes.


Assuntos
Células-Tronco Mesenquimais/citologia , Placenta/citologia , Disrafismo Espinal/terapia , Células Estromais/citologia , Animais , Apoptose , Bovinos , Linhagem Celular Tumoral , Técnicas de Cocultura , Meios de Cultivo Condicionados/química , Exossomos/metabolismo , Feminino , Galectina 1/fisiologia , Humanos , Transplante de Células-Tronco Mesenquimais , Mesoderma/citologia , Defeitos do Tubo Neural/terapia , Neuritos/metabolismo , Estresse Oxidativo , Gravidez , Ovinos , Transdução de Sinais , Estaurosporina
8.
Stem Cell Res Ther ; 10(1): 34, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670078

RESUMO

BACKGROUND: Hemophilia A (HA) is an X-linked recessive disorder caused by mutations in the Factor VIII (FVIII) gene leading to deficient blood coagulation. As a monogenic disorder, HA is an ideal target for cell-based gene therapy, but successful treatment has been hampered by insufficient engraftment of potential therapeutic cells. METHODS: In this study, we sought to determine whether co-transplantation of endothelial colony-forming cells (ECFCs) and placenta-derived mesenchymal stromal cells (PMSCs) can achieve long-term engraftment and FVIII expression. ECFCs and PMSCs were transduced with a B domain deleted factor VIII (BDD-FVIII) expressing lentiviral vector and luciferase, green fluorescent protein or Td-Tomato containing lentiviral tracking vectors. They were transplanted intramuscularly into neonatal or adult immunodeficient mice. RESULTS: In vivo bioluminescence imaging showed that the ECFC only and the co-transplantation groups but not the PMSCs only group achieved long-term engraftment for at least 26 weeks, and the co-transplantation group showed a higher engraftment than the ECFC only group at 16 and 20 weeks post-transplantation. In addition, cell transplantation at the neonatal age achieved higher engraftment than at the adult age. Immunohistochemical analyses further showed that the engrafted ECFCs expressed FVIII, maintained endothelial phenotype, and generated functional vasculature. Next, co-transplantation of ECFCs and PMSCs into F8 knock-out HA mice reduced the blood loss volume from 562.13 ± 19.84 µl to 155.78 ± 44.93 µl in a tail-clip assay. CONCLUSIONS: This work demonstrated that co-transplantation of ECFCs with PMSCs at the neonatal age is a potential strategy to achieve stable, long-term engraftment, and thus holds great promise for cell-based treatment of HA.


Assuntos
Células Endoteliais/metabolismo , Hemofilia A/genética , Células-Tronco Mesenquimais/metabolismo , Placenta/metabolismo , Animais , Feminino , Sangue Fetal , Humanos , Recém-Nascido , Camundongos , Gravidez
9.
J Extracell Vesicles ; 7(1): 1522236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30275938

RESUMO

Through traditional medicine, there were diseases and disorders that previously remained untreated or were simply thought to be incurable. Since the discovery of mesenchymal stem cells (MSCs), there has been a flurry of research to develop MSC-based therapy for diseases and disorders. It is now well-known that MSCs do not typically engraft after transplantation and exhibit their therapeutic effect via a paracrine mechanism. In addition to secretory proteins, MSCs also produce extracellular vesicles (EVs), membrane-bound nanovesicles containing proteins, DNA and RNA. The secreted vesicles then interact with target cells and deliver their contents, imparting their ultimate therapeutic effect. Unlike the widely studied cancer cells, the yield of MSC-exosomes is a limiting factor for large-scale production for cell-free therapies. Here we summarise potential approaches to increase the yield of such vesicles while maintaining or enhancing their efficacy by engineering the extracellular environment and intracellular components of MSCs.

10.
Cell Transplant ; 27(1): 130-139, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562772

RESUMO

Hemophilia A (HA) is an X-linked recessive disorder caused by mutations in the factor VIII ( FVIII) gene leading to deficient blood coagulation. The current standard of care is frequent infusions of plasma-derived FVIII or recombinant B-domain-deleted FVIII (BDD-FVIII). While this treatment is effective, many patients eventually develop FVIII inhibitors that limit the effectiveness of the infused FVIII. As a monogenic disorder, HA is an ideal target for gene or cell-based therapy. Several studies have investigated allogeneic stem cell therapy targeting in utero or postnatal treatment of HA but have not been successful in completely correcting HA. Autologous in utero transplantation of mesenchymal stem cells is promising for treatment of HA due to the naive immune status of the fetal environment as well as its potential to prevent transplant rejection and long-term FVIII inhibitor formation. HA can be diagnosed by chorionic villus sampling performed during the first trimester (10 to 13 wk) of gestation. In this study, we used an established protocol and isolated placenta-derived mesenchymal stromal cells (PMSCs) from first trimester chorionic villus tissue and transduced them with lentiviral vector encoding the BDD-FVIII gene. We show that gene-modified PMSCs maintain their immunophenotype and multipotency, express, and secrete high levels of active FVIII. PMSCs were then transplanted at embryonic day 14.5 (E14.5) into wild-type fetuses from time-mated pregnant mice. Four days after birth, pups were checked for engraftment, and varying levels of expression of human green fluorescent protein were found in the organs tested. This study shows feasibility of the approach to obtain PMSCs from first trimester chorionic villus tissue, genetically modify them with the FVIII gene, and transplant them in utero for cell-mediated gene therapy of HA. Future studies will involve evaluation of long-term engraftment, phenotypic correction in HA mice, and prevention of FVIII inhibitor development by this approach.


Assuntos
Amostra da Vilosidade Coriônica/métodos , Hemofilia A/terapia , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Animais , Fator VIII/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Gravidez , Transplante de Células-Tronco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA