Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Genet ; 60(6): 1895-1913, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35138469

RESUMO

Gastric cancer (GC) is the fifth most common cancer, which has a significant impact on human health. Recent researches have shown that circular RNAs (circRNAs) could affect the progress of GC, but the mechanism still indistinct. In this work, we explored the roles of circ_0001190 in GC. The levels of circ_0001190, microRNA-586 (miR-586) and sclerostin domain containing 1 (SOSTDC1) were detected by quantitative RT-PCR and western blot in GC. The cell functions were scrutinized by cell counting kit-8 assay, 5-Ethynyl-29-deoxyuridine assay, flow cytometry assay, tube formation assay, transwell assay, and western blot. Furthermore, the relationship between miR-586 and circ_0001190 or SOSTDC1 was identified by dual-luciferase reporter assay. Finally, the xenograft model test was implemented to demonstrate the effect of exosomal circ_0001190 in vivo. The levels of circ_0001190 and SOSTDC1 were downregulated, and the miR-586 level was increased in GC. For functional assay, circ _0001190 overexpression inhibited cell vitality, cell proliferation, angiogenesis, cell migration and invasion, whereas stimulated cell apoptosis in GC cells. Circ _0001190 served as a miR-586 sponge to adjust the expression of SOSTDC1. Additionally, miR-586 could promote the advancement of GC by interfering SOSTDC1. Exosomal circ_0001190 overexpression inhibited the development of GC by miR-586/SOSTDC1 axis, which proposed a potential targeted therapy for GC cure.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , MicroRNAs , RNA Circular , Neoplasias Gástricas , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Circular/genética , Neoplasias Gástricas/genética
2.
Cancer Manag Res ; 12: 10067-10075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116863

RESUMO

OBJECTIVE: The purpose of this study was to prepare and characterize a lipid magnetic ball modified with KRAS antibodies on the surface and to isolate circulating tumor cells of colorectal cancer with KRAS mutations. METHODS: The microemulsion method was used to form lipid bilayers to encapsulate Fe3O4 nanoparticles with superparamagnetism to form lipid magnetic balls, and KRAS antibodies were formed on the surface to form KRAS immune lipid magnetic balls. RESULTS: Compared with traditional EpCAM antibody-modified lipid magnetic balls, it can effectively improve the capture ability of colorectal cancer circulating tumor cells with KRAS mutation, the capture rate reaches 92.9%, and the capture results are consistent with clinical diagnosis and pathology. CONCLUSION: Our results showed that KRAS antibody-modified lipid magnetic balls can be used in the diagnosis and treatment of KRAS colorectal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA