Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 29(2): 75, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38420834

RESUMO

BACKGROUND: Cerebral Cavernous Malformations (CCMs) are brain vascular abnormalities associated with an increased risk of hemorrhagic strokes. Familial CCMs result from autosomal dominant inheritance involving three genes: KRIT1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3). CCM1 and CCM3 form the CCM Signal Complex (CSC) by binding to CCM2. Both CCM1 and CCM2 exhibit cellular heterogeneity through multiple alternative spliced isoforms, where exons from the same gene combine in diverse ways, leading to varied mRNA transcripts. Additionally, both demonstrate nucleocytoplasmic shuttling between the nucleus and cytoplasm, suggesting their potential role in gene expression regulation as transcription factors (TFs). Due to the accumulated data indicating the cellular localization of CSC proteins in the nucleus and their interaction with progesterone receptors, which serve dual roles as both cellular signaling components and TFs, a question has arisen regarding whether CCMs could also function in both capacities like progesterone receptors. METHODS: To investigate this potential, we employed our proprietary deep-learning (DL)-based algorithm, specifically utilizing a biased-Support Vector Machine (SVM) model, to explore the plausible cellular function of any of the CSC proteins, particularly focusing on CCM gene isoforms with nucleocytoplasmic shuttling, acting as TFs in gene expression regulation. RESULTS: Through a comparative DL-based predictive analysis, we have effectively discerned a collective of 11 isoforms across all CCM proteins (CCM1-3). Additionally, we have substantiated the TF functionality of 8 isoforms derived from CCM1 and CCM2 proteins, marking the inaugural identification of CCM isoforms in the role of TFs. CONCLUSIONS: This groundbreaking discovery directly challenges the prevailing paradigm, which predominantly emphasizes the involvement of CSC solely in endothelial cellular functions amid various potential cellular signal cascades during angiogenesis.


Assuntos
Aprendizado Profundo , Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Receptores de Progesterona/metabolismo , Proteínas de Transporte/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
J Clin Transl Hepatol ; 11(4): 863-876, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37408810

RESUMO

Background and Aims: Hepatocellular carcinoma (HCC) is a common and deadly cancer. Accumulating evidence supports modulation of autophagy as a novel approach for determining cancer cell fate. The aim of this study to evaluate the effectiveness of sarmentosin, a natural compound, on HCC in vitro and in vivo and elucidated the underlying mechanisms. Methods: Cell functions and signaling pathways were analyzed in HepG2 cells using western blotting, real-time PCR, siRNA, transmission electron microscopy and flow cytometry. BALB/c nude mice were injected with HepG2 cells to produce a xenograft tumour nude mouse model for in vivo assessments and their tumors, hearts, lungs and kidneys were isolated. Results: We found that autophagy was induced by sarmentosin in a concentration- and time-dependent manner in human HCC HepG2 cells by western blot assays and scanning electron microscopy. Sarmentosin-induced autophagy was abolished by the autophagy inhibitors 3-methyladenine, chloroquine, and bafilomycin A1. Sarmentosin activated Nrf2 in HepG2 cells, as shown by increased nuclear translocation and upregulated expression of Nrf2 target genes. Phosphorylation of mTOR was also inhibited by sarmentosin. Sarmentosin stimulated caspase-dependent apoptosis in HepG2 cells, which was impaired by silencing Nrf2 or chloroquine or knocking down ATG7. Finally, sarmentosin effectively repressed HCC growth in xenograft nude mice and activated autophagy and apoptosis in HCC tissues. Conclusions: This study showed sarmentosin stimulated autophagic and caspase-dependent apoptosis in HCC, which required activation of Nrf2 and inhibition of mTOR. Our research supports Nrf2 as a therapeutic target for HCC and sarmentosin as a promising candidate for HCC chemotherapy.

3.
J Nat Med ; 77(2): 262-275, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36520340

RESUMO

To explore the effect of acacetin on myocardial mitochondrial dysfunction in spontaneously hypertensive rats (SHR) with insulin resistance (IR), and the possible mechanism. Rapid IR was first induced in fructose-fed SHR, and they were then treated with acacetin (25, 50 mg/kg). After 7 weeks, the rats were tested for hypertension, IR, cardiac function, and mitochondrial damage status. Potential mechanisms of action were explored in terms of oxidative stress, mitochondrial fission and division, apoptosis, and the insulin signaling pathway. Subsequently, the PI3K gene was silenced, after intervention with acacetin (5 µM) for 24 h, and H2O2 was used to stimulate H9c2 for 4 h, it was evaluated whether silencing PI3K would affect the therapeutic effect of acacetin. In SHR fed with fructose, acacetin can improve hypertension, IR, cardiac function (LVEF, LVFS), and mitochondrial damage (mitochondria number, ATP); inhibit oxidative stress (ROS, SOD, Nrf2, Keap1), mitochondrial fission (MFF, Drp1), and myocardial cell apoptosis (apoptosis rate, Bax, Bcl-2, cytochrome c); promote mitochondrial fusion (Mfn2) and activate insulin signaling pathways (PI3K/AKT). However, silencing PI3K inhibited the abovementioned effects of acacetin. In conclusion, acacetin improved myocardial mitochondrial dysfunction through regulating oxidative stress, mitochondrial fission and fusion, and mitochondrial pathway apoptosis mediated by PI3K/AKT signaling pathway in hypertensive rats with IR.


Assuntos
Hipertensão , Insulinas , Ratos , Animais , Ratos Endogâmicos SHR , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Miócitos Cardíacos , Peróxido de Hidrogênio/metabolismo , Frutose , Fator 2 Relacionado a NF-E2/metabolismo , Apoptose , Mitocôndrias/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia
4.
Front Genet ; 13: 890247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338994

RESUMO

Lung cancer is one of the most common causes of cancer-related deaths, and non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases. Kirsten rat sarcoma virus (KRAS), one of the three subtypes of the RAS family, is the most common oncogene involved in human cancers and encodes the key signaling proteins in tumors. Oncogenic KRAS mutations are considered the initiating factors in 30% of NSCLC cases, accounting for the largest proportion of NSCLC cases associated with driver mutations. Because effective inhibition of the related functions of KRAS with traditional small-molecule inhibitors is difficult, the KRAS protein is called an "undruggable target." However, in recent years, the discovery of a common mutation in the KRAS gene, glycine 12 mutated to cysteine (G12C), has led to the design and synthesis of covalent inhibitors that offer novel strategies for effective targeting of KRAS. In this review, we have summarized the structure, function, and signal transduction pathways of KRAS and discussed the available treatment strategies and potential treatment prospects of KRAS mutation subtypes (especially G12C, G12V, and G12D) in NSCLC, thus providing a reference for selecting KRAS mutation subtypes for the treatment of NSCLC.

5.
Biomed Pharmacother ; 150: 113061, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658231

RESUMO

OBJECTIVE: We investigated the protective effects of ephedra herb (HEPH) on adriamycin-induced testicular toxicity in rats and explored the potential mechanisms underlying these effects. METHODS: A rat model of adriamycin injury was established, and sperm motility-related indicator and oxidative stress levels in the testis were evaluated. Serum levels of sex hormones and levels of testicular cell apoptosis were detected by enzyme-linked immunosorbent assay and flow cytometry, respectively. Western blotting (WB), immunofluorescence analyses, and reverse transcription-polymerase chain reaction (RT-PCR) were performed to evaluate the gonadotropin-releasing hormone (GnRH) signalling pathway- and meiosis-related genes and proteins. In subsequent in vitro experiments, adriamycin was used to stimulate GC-1 cells, which were treated with HEPH, ephedrine, or pseudoephedrine. Cell viability was assessed using flow cytometry to detect apoptosis and reactive oxygen species, whereas the GnRH signalling pathway and levels of meiosis-related genes and proteins were evaluated by InCell WB, a high-content imaging system, and RT-PCR. RESULTS: Per in vivo experiments, HEPH restored testicular weight and function, sperm characteristics, serum and tissue hormonal levels, and antioxidant defences and significantly activated the GnRH signalling pathway- and meiosis-related protein levels. All protective effects of HEPH against adriamycin-induced injury were antagonised by the GnRH antagonist cetrorelix. In vitro, HEPH, ephedrine, and pseudoephedrine significantly reduced adriamycin-induced GC-1 cell apoptosis and reactive oxygen species levels and increased the expression of GnRH signalling pathway- and meiosis-related proteins. The effect of pseudoephedrine was greater than that of ephedrine, and these findings may be an important basis for understanding the effects of HEPH.


Assuntos
Ephedra , Testículo , Animais , Doxorrubicina/farmacologia , Efedrina/metabolismo , Efedrina/farmacologia , Hormônio Liberador de Gonadotropina/farmacologia , Masculino , Pseudoefedrina/metabolismo , Pseudoefedrina/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Motilidade dos Espermatozoides
6.
Int J Nanomedicine ; 17: 1549-1566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401001

RESUMO

Purpose: Pseudoephedrine (PSE) has rapid absorption and metabolism, which limits its pharmacologic actions. We postulated that pseudoephedrine nanoparticles (PSE-NPs) with high bioavailability could overcome this limitation. The defensive function of PSE-NPs nanoparticles against adriamycin-induced reproductive toxicity in mice was studied. Methods: We encapsulated PSE in polylactide-polyglycolide nanoparticles (PLGA-NPs) and verified their protective activity against testicular injury in vivo and in vitro. Results: We report a promising delivery system that loads PSE into PLGA-NPs and finally assembles it into a nanocomposite particle. In vitro, PSE-NPs reduced the adriamycin-induced apoptosis of GC-1 cells significantly, improved mitochondrial energy metabolism and promoted expression of the proteins related to the gonadotropin-releasing hormone (GnRh) receptor signaling pathway. In vivo, evaluation of sperm indices and histology showed that adriamycin could induce testicular toxicity. PSE-NPs significantly increased the sperm motility of mice, reduced the percent apoptosis and oxidative stress of testes, increased serum levels of GnRh, activated the GnRhR signaling pathway in testes and promoted expression of meiosis-related factors. Conclusion: In view of their safety and efficiency, these PSE-NPs have potential applications in alleviating adriamycin-induced reproductive toxicity.


Assuntos
Nanopartículas , Pseudoefedrina , Animais , Doxorrubicina/toxicidade , Hormônio Liberador de Gonadotropina , Masculino , Camundongos , Transdução de Sinais , Motilidade dos Espermatozoides
7.
Biomed Pharmacother ; 150: 112972, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35447551

RESUMO

Chronic liver injury could gradually progress to liver fibrosis, cirrhosis, and even hepatic carcinoma without effective treatment. The massive production and activation of abnormal cell differentiation is vital to the procession of liver diseases. Epithelial-mesenchymal transformation (EMT) is a biological process in which differentiated epithelial cells lose their epithelial characteristics and acquire mesenchymal cell migration capacity. Emerging evidence suggests that EMT not only occurs in the process of hepatocellular carcinogenesis, but also appears in liver cells transforming to myofibroblasts, a core event of liver disease. Non-coding RNA (ncRNA) such as microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) are important regulatory factors in EMT, which can regulate target gene expression by binding with RNA single-stranded. Various studies had shown that ncRNA regulation of EMT plays a key role in liver disease development, and many effective ncRNAs have been identified as promising biomarkers for the diagnosis and treatment of liver disease. In this review, we focus on the relationship between the different ncRNAs and EMT as well as the specific molecular mechanism in the liver diseases to enrich the pathological progress of liver diseases and provide reference for the treatment of liver diseases.


Assuntos
Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Transição Epitelial-Mesenquimal/genética , Humanos , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética
8.
Front Cell Dev Biol ; 10: 840576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419365

RESUMO

Pyroptosis is a novel form of programmed cell death (PCD), which is characterized by DNA fragmentation, chromatin condensation, cell swelling and leakage of cell contents. The process of pyroptosis is performed by certain inflammasome and executor gasdermin family member. Previous researches have manifested that pyroptosis is closely related to human diseases (such as inflammatory diseases) and malignant tumors, while the regulation mechanism of pyroptosis is not yet clear. Non-coding RNA (ncRNA) such as microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA) have been widely identified in the genome of eukaryotes and played a paramount role in the development of cell function and fate after transcription. Accumulating evidences support the importance of ncRNA biology in the hallmarks of pyroptosis. However, the associations between ncRNA and pyroptosis are rarely reviewed. In this review, we are trying to summarize the regulation and function of ncRNA in cell pyroptosis, which provides a new research direction and ideas for the study of pyroptosis in different diseases.

9.
Phytomedicine ; 100: 154065, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35358932

RESUMO

BACKGROUND: Doxorubicin (DOX) is a highly effective chemotherapeutic that is effective for various tumours. However, the clinical application of DOX has been limited by adverse reactions such as cardiotoxicity and heart failure. Since DOX-induced cardiotoxicity is irreversible, drugs to prevent DOX-induced cardiotoxicity are needed. PURPOSE: This study aimed to investigate the effect of total flavonoids of Selaginella tamariscina (P.Beauv.) Spring (TFST) on doxorubicin-induced cardiotoxicity. METHODS: The present study established DOX-induced cardiotoxicity models in C57BL/6 mice treated with DOX (cumulative dose: 20 mg/kg body weight) and H9c2 cells incubated with DOX (1 µM/l) to explore the intervention effect and potential mechanism of TFST. Echocardiography was performed to evaluate left ventricular functions. Heart tissue samples were collected for histological evaluation. Myocardial injury markers and oxidative stress markers were examined. Mitochondrial energy metabolism pathway associated proteins PPARα/PGC-1α/Sirt3 were detected. We also explored the effects of TFST on endoplasmic reticulum (ER) stress and apoptosis. To further investigate the protective mechanism of TFST, we used the specific small interfering RNA MFN2 (siMFN2) to explore the effect of MFN2 on TFST against DOX-induced cardiotoxicity in vitro. Flow cytometry detected reactive oxygen species, mitochondrial membrane potential and apoptosis. Cell mitochondrial stress was measured by Seahorse XF analyser. RESULTS: Both in vivo and in vitro studies verified that TFST observably alleviated DOX-induced mitochondrial dysfunction and ER stress. However, these effects were reversed after transfected siMFN2. CONCLUSION: Our results indicated that TFST ameliorates DOX-induced cardiotoxicity by alleviating mitochondrial dysfunction and ER stress by activating MFN2/PERK. MFN2/PERK pathway activation may be a novel mechanism to protect against DOX-induced cardiotoxicity.


Assuntos
Cardiotoxicidade , Selaginellaceae , Animais , Apoptose , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Doxorrubicina/farmacologia , Estresse do Retículo Endoplasmático , Flavonoides/farmacologia , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Miócitos Cardíacos , Estresse Oxidativo
10.
Molecules ; 26(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684716

RESUMO

Lipid deposition in the kidney can cause serious damage to the kidney, and there is an obvious epithelial-mesenchymal transition (EMT) and fibrosis in the late stage. To investigate the interventional effects and mechanisms of phenolic compounds from Mori Cortex on the EMT and fibrosis induced by sodium oleate-induced lipid deposition in renal tubular epithelial cells (NRK-52e cells), and the role played by CD36 in the adjustment process, NRK-52e cells induced by 200 µmol/L sodium oleate were given 10 µmoL/L moracin-P-2″-O-ß-d-glucopyranoside (Y-1), moracin-P-3'-O-ß-d-glucopyranoside (Y-2), moracin-P-3'-O-α-l-arabinopyranoside (Y-3), and moracin-P-3'-O-[ß-glucopyranoside-(1→2)arabinopyranoside] (Y-4), and Oil Red O staining was used to detect lipid deposition. A Western blot was used to detect lipid deposition-related protein CD36, inflammation-related protein (p-NF-κB-P65, NF-κB-P65, IL-1ß), oxidative stress-related protein (NOX1, Nrf2, Keap1), EMT-related proteins (CD31, α-SMA), and fibrosis-related proteins (TGF-ß, ZEB1, Snail1). A qRT-PCR test detected inflammation, EMT, and fibrosis-related gene mRNA levels. The TNF-α levels were detected by ELISA, and the colorimetric method was used to detects SOD and MDA levels. The ROS was measured by flow cytometry. A high-content imaging analysis system was applied to observe EMT and fibrosis-related proteins. At the same time, the experiment silenced CD36 and compared the difference between before and after drug treatment, then used molecular docking technology to predict the potential binding site of the active compounds with CD36. The research results show that sodium oleate can induce lipid deposition, inflammation, oxidative stress, and fibrosis in NRK-52e cells. Y-1 and Y-2 could significantly ameliorate the damage caused by sodium oleate, and Y-2 had a better ameliorating effect, while there was no significant change in Y-3 or Y-4. The amelioration effect of Y-1 and Y-2 disappeared after silencing CD36. Molecular docking technology showed that the Y-1 and Y-2 had hydrogen bonds to CD36 and that, compared with Y-1, Y-2 requires less binding energy. In summary, moracin-P-2″-O-ß-d-glucopyranoside and moracin-P-3'-O-ß-d-glucopyranoside from Mori Cortex ameliorated lipid deposition, EMT, and fibrosis induced by sodium oleate in NRK-52e cells through CD36.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Morus/metabolismo , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , China , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Fibrose , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
11.
IUBMB Life ; 73(9): 1166-1179, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34173707

RESUMO

AIMS: This study was designated to illustrate the underlying mechanisms of emodin anti-liver fibrosis via network pharmacology and experiment. METHODS: The TSMCP and Genecards database were applied to screen the relevant targets of emodin or liver fibrosis. The essential target was selected by using Cytoscape to analyze the topological network of potential targets. Furthermore, we constructed a preliminary molecule docking study to explore the binding site by Surflex-Dock suite SYBYL X 2.0. The DAVID database was selected for gene functional annotations and KEGG enrichment analysis. Moreover, we demonstrated the ameliorating effect of emodin on carbon tetrachloride (CCl4 )-induced liver injury in mice. We also verified the network predictions in vitro via various techniques. RESULTS: The collected results showed that 35 targets were related to emodin, and 6,198 targets were associated with liver fibrosis. The Venn analysis revealed that 17 intersection targets were correlated with emodin anti-liver fibrosis. The topological network analysis suggested that the p53 was the remarkable crucial target. Besides, the molecule docking results showed that emodin could directly interact with p53 by binding the active site residues ASN345, GLN331, and TYR347. Finally, KEGG pathway enrichment results indicated that essential genes were mainly enriched in mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, our study confirmed that emodin alleviated CCl4 -induced liver injury in mice, inducing hepatic stellate cells (HSCs) apoptosis via regulating the p53/ERK/p38 axis. CONCLUSIONS: This study partially verified the network pharmacological prediction of emodin inducing HSCs cell apoptosis through the p53/ERK/p38 axis.


Assuntos
Emodina/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Farmacologia em Rede/métodos , Animais , Apoptose/efeitos dos fármacos , Tetracloreto de Carbono/toxicidade , Caspases/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Anotação de Sequência Molecular , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
12.
Toxicology ; 452: 152707, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33549628

RESUMO

Liver pathological angiogenesis is considered to be one of the key events in the development of liver fibrosis. Autophagy is a defense and stress regulation mechanism. However, whether autophagy regulates pathological angiogenesis in liver fibrosis is still questionable. Here, we aimed to study how curcumol regulated liver sinusoidal endothelial cells (LSECs) angiogenesis through autophagy. We found that curcumol (10, 20 and 40 µM) could inhibit the expression of angiogenesis markers in the LSECs. Importantly, we showed that curcumol might influence LSEC pathological angiogenesis by regulating autophagy level. Furthermore, we indicated that the transcription factor Krüppel-like factor 5 (KLF5) was considered as a key target for curcumol to regulate LSEC angiogenesis. Interestingly, we also suggested that autophagy was as a potential mechanism for curcumol to restrain KLF5 expression. Increased autophagy level could impair the suppression effect of curcumol on KLF5. Fascinatingly, our results indicated that curcumol inhibited autophagy and led to p62 accumulation, which might be a regulation mechanism of KLF5 degradation. Finally, in mice liver fibrosis model, we unanimously showed that curcumol (30 mg/kg) inhibited pathological angiogenesis by reducing LSEC autophagy level and suppressing KLF5 expression. Collectively, these results provided a deeper insight into the molecular mechanism of curcumol to inhibit LSEC pathological angiogenesis during liver fibrosis.


Assuntos
Autofagia/efeitos dos fármacos , Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Neovascularização Patológica/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sesquiterpenos/uso terapêutico , Animais , Autofagia/fisiologia , Capilares/efeitos dos fármacos , Capilares/metabolismo , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neovascularização Patológica/prevenção & controle , Sesquiterpenos/farmacologia
13.
Life Sci ; 264: 118696, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33157090

RESUMO

AIMS: Liver fibrosis is a difficult problem in the medical field. We previously reported that curcumol, a bioactive substance, may inhibit the pathological angiogenesis of liver sinusoidal endothelial cells (LSECs) and play a good anti-hepatic fibrosis effect. However, the mechanism of curcumol inhibiting angiogenesis in LSEC needs to be further clarified. Here, we focus on how curcumol inhibits LSEC angiogenesis in liver fibrosis. MATERIALS AND METHODS: Primary rat LSECs were cultured in vitro, and various molecular experiments including real-time PCR, western blot, immunofluorescence, tube formation assay and transwell migration assay were used to clarify the potential mechanism of curcumol. Carbon tetrachloride (CCl4) was applied to create a mouse liver fibrosis model. Blood and livers were taken to elucidate the efficacy of curcumol in vivo. KEY FINDINGS: We found that curcumol could effectively inhibit LSEC angiogenesis in vitro. Interestingly, this process may depend on curcumol's inhibition of the expression of transcription factor KLF5. Mice experiment also showed that curcumol could alleviate chronic liver injury by reducing KLF5 expression. In addition, we suggested that curcumol could reduce the production of mitochondrial ROS and improve mitochondrial morphology in LSEC. More importantly, we proved that curcumol could suppress KLF5-mediated LSEC angiogenesis by inhibiting ROS/ERK signaling. SIGNIFICANCE: We suggested that transcription factor KLF5 could be considered as a new target molecule of curcumol in improving liver fibrosis, and pointed out that curcumol targeted ROS/ERK-mediated KLF5 expression could inhibit LSEC angiogenesis. This provided a new theoretical basis for curcumol to ameliorate liver fibrosis.


Assuntos
Células Endoteliais/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/patologia , Sistema de Sinalização das MAP Quinases , Neovascularização Patológica/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/uso terapêutico , Animais , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Neovascularização Patológica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Sesquiterpenos/farmacologia
14.
Life Sci ; 263: 118713, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33157091

RESUMO

AIMS: Our study was designed to explore the function and mechanism of taxifolin on glucose metabolism and water-salt metabolism in kidney with metabolic syndrome (MS) rats. MAIN METHODS: Spontaneous hypertensive rats were induced by fructose to establish MS model. Systolic blood pressure (SBP) and homeostasis model assessment of insulin resistance (HOMA-IR) were measured after 7 weeks of continuous administration with taxifolin. Kidney injury indices and histopathological evaluation were done. The apoptosis rate of primary kidney cells was detected by flow cytometry. Insulin signaling pathway related proteins and renal glucose transport-related proteins were detected by western blotting. We assessed the effects of taxifolin on sodium water retention and renin-angiotensin-aldosterone system (RAAS) in MS rats. We examined not only changes in urine volume, osmotic pressure, urinary sodium and urinary chloride excretion, but also the effects on NA+/K+-ATPase and RAAS indicators. We also detected changes in inflammatory factors by immunohistochemical staining and immunofluorescence. In vitro experiment, high glucose and salt stimulated NRK-52E cells. By adding the PI3K inhibitor (wortmannin) to inhibit the PI3K, the effects of inhibiting the PI3K/AKT signaling pathway on glucose metabolism, water-sodium retention and inflammatory response were discussed. KEY FINDINGS: Taxifolin effectively reversed SBP, HOMA-IR, the kidney indices and abnormal histopathological changes induced by MS. Besides, taxifolin called back the protein associated with the downstream glucose metabolism pathway of PI3K/AKT. It also inhibited overactivation of RAAS and inflammatory response. In vitro experiments have demonstrated that the PI3K/AKT signaling pathway plays an important role in this process. SIGNIFICANCE: Taxifolin can improve homeostasis of glucose, inhibit overactivation of RAAS and reduce inflammatory response by PI3K/AKT signaling pathway.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Síndrome Metabólica/tratamento farmacológico , Quercetina/análogos & derivados , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Resistência à Insulina , Rim/citologia , Rim/metabolismo , Masculino , Síndrome Metabólica/fisiopatologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sódio/metabolismo , Água/metabolismo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
15.
Mol Biol Rep ; 47(9): 6899-6918, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32892299

RESUMO

The aim of the work was to investigate the effects of acacetin on endothelial dysfunction and aortic fibrosis in insulin-resistant SHR rats and explore its mechanism. Seven-week-old male spontaneously hypertensive rats (SHR) were selected to establish a rat model of hypertension with insulin resistance induced by 10% fructose. The nuclear factor kappa B p65 (NF-κB p65) and Collagen I were observed by Immunohistochemistry. Immunofluorescence was used to observe estrogen receptor-alpha (ERα), estrogen receptor-beta (ERß), and G protein-coupled receptor 30 (GPR30). Western blotting was used to detect interleukin (IL-1ß), Arginase 2 (ARG2), Nostrin, endothelial nitric oxide synthase (eNOS), TGF-ß, Smad3, ERK pathway proteins such as p-c-Raf, p-MEK1/2, p-ERK, ERK, p-P90RSK and p-MSK1. We found that acacetin did have an improvement on endothelial dysfunction and fibrosis. Meanwhile, it was also found to have a significant effect on the level of estrogen in this model by accident. Then, the experiment of uterine weight gain in mice confirmed that acacetin had a certain estrogen-like effect in vivo and played its role through the estrogen receptors pathway. In vitro experience HUVEC cells were stimulated with 30 mM/L glucose and 100 mM/L NaCl for 24 h to establish the endothelial cell injury model. HUVEC cells were treated with 1 µM/L estrogen receptors antagonist (ICI 182780) for 30 min before administration. Cell experiments showed that acacetin could reduce the apoptosis of HUVEC cells, the levels of inflammatory cytokines and the expression of TGF-ß, Collagen I and Smad3 in endothelial cell injury model. After treatment with ICI 182780, the improvement of acacetin was significantly reversed. The results showed that acacetin relieved endothelial dysfunction and reduced the aortic fibrosis in insulin-resistant SHR rats by reducing the release of inflammatory factors and improving vasodilatory function through estrogen signaling pathway.


Assuntos
Aorta/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fibrose/tratamento farmacológico , Flavonas/farmacologia , Glucose/farmacologia , Receptores de Estrogênio/metabolismo , Animais , Aorta/patologia , Apoptose/efeitos dos fármacos , Arginase/metabolismo , Colágeno Tipo I/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Resistência à Insulina , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Endogâmicos SHR , Receptores de Estrogênio/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Cloreto de Sódio/farmacologia , Fator de Crescimento Transformador beta/metabolismo
16.
Toxicology ; 440: 152475, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32344006

RESUMO

OBJECTIVES: Curcumol, a guaiane-type sesquiterpenoid hemiketal extracted from the herb Rhizoma Curcumae, exhibits multiple-pharmacological activities. We previously reported that curcumol ameliorated hepatic fibrosis by inhibiting hepatic stellate cell (HSC) activation. In this study, we aimed to investigate the effect of curcumol on HSC migration and adhesion, and reveal its regulation mechanisms. MATERIALS AND METHODS: Cellular viability was determined by Cell Counting Kit-8. Cell migration was detected by boyden chamber and cell scratch experiment. Recombinant human periostin (rh POSTN) and adeno-associated viral (AAV)-GFP-periostin were used to achieve POSTN overexpression in vitro and in vivo, respectively. Nuclear factor kappa B (NF-κB)-p65 overexpression was achieved by using plasmid. ELISA was conducted to detect POSTN level. Immunohistochemistry, qRT-PCR, Western blotting, and immunofluorescence were performed to assess associated factor expression. RESULTS: Curcumol suppressed HSC migration and adhesion, and reduced the secretion and expression of POSTN. By gain of function POSTN in HSCs, using rh POSTN, we found that the inhibition of HSC migration and adhesion by curcumol depended on the decrease of POSTN. Besides, curcumol protection against chronic CCl4-caused hepatic fibrosis could be impaired by POSTN overexpression. Moreover, we showed that curcumol repressed NF-κB signaling and the production of pro-inflammatory factor. Importantly, curcumol down-regulation of POSTN was rescued by knock-in of NF-κB, as well as the inhibition of HSC migration and adhesion. CONCLUSION: These findings reveal the molecular mechanism of curcumol-reduced HSC migration and adhesion, by which points to the possibility of using curcumol based on NF-κB dependent POSTN for the treatment of fibrogenesis.


Assuntos
Moléculas de Adesão Celular/antagonistas & inibidores , Células Estreladas do Fígado/efeitos dos fármacos , Sesquiterpenos/farmacologia , Fator de Transcrição RelA/antagonistas & inibidores , Animais , Intoxicação por Tetracloreto de Carbono/patologia , Intoxicação por Tetracloreto de Carbono/prevenção & controle , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Contagem de Células , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Regulação para Baixo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas Recombinantes
17.
BMC Res Notes ; 13(1): 205, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276658

RESUMO

OBJECTIVE: Early disease screening and diagnosis are important for improving patient survival. Thus, identifying early predictive features of disease is necessary. This paper presents a comprehensive comparative analysis of different Machine Learning (ML) systems and reports the standard deviation of the results obtained through sampling with replacement. The research emphasises on: (a) to analyze and compare ML strategies used to predict Breast Cancer (BC) and Cardiovascular Disease (CVD) and (b) to use feature importance ranking to identify early high-risk features. RESULTS: The Bayesian hyperparameter optimization method was more stable than the grid search and random search methods. In a BC diagnosis dataset, the Extreme Gradient Boosting (XGBoost) model had an accuracy of 94.74% and a sensitivity of 93.69%. The mean value of the cell nucleus in the Fine Needle Puncture (FNA) digital image of breast lump was identified as the most important predictive feature for BC. In a CVD dataset, the XGBoost model had an accuracy of 73.50% and a sensitivity of 69.54%. Systolic blood pressure was identified as the most important feature for CVD prediction.


Assuntos
Técnicas e Procedimentos Diagnósticos/normas , Aprendizado de Máquina , Modelos Biológicos , Teorema de Bayes , Biópsia por Agulha Fina/normas , Neoplasias da Mama/diagnóstico , Doenças Cardiovasculares/diagnóstico , Feminino , Humanos , Sensibilidade e Especificidade
18.
J Cell Mol Med ; 24(9): 5304-5316, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32243714

RESUMO

A growing number of studies recognize that long non-coding RNAs (lncRNAs) are essential to mediate multiple tumorigenic processes, including hepatic tumorigenesis. However, the pathological mechanism of lncRNA-regulated liver cancer cell growth remains poorly understood. In this study, we identified a novel function lncRNA, named polo-like kinase 4 associated lncRNA (lncRNA PLK4, GenBank Accession No. RP11-50D9.3), whose expression was dramatically down-regulated in hepatocellular carcinoma (HCC) tissues and cells. Interestingly, talazoparib, a novel and highly potent poly-ADP-ribose polymerase 1/2 (PARP1/2) inhibitor, could increase lncRNA PLK4 expression in HepG2 cells. Importantly, we showed that talazoparib-induced lncRNA PLK4 could function as a tumour suppressor gene by Yes-associated protein (YAP) inactivation and induction of cellular senescence to inhibit liver cancer cell viability and growth. In summary, our findings reveal the molecular mechanism of talazoparib-induced anti-tumor effect, and suggest a potential clinical use of talazoparib-targeted lncRNA PLK4/YAP-dependent cellular senescence for the treatment of HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Senescência Celular , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Ftalazinas/uso terapêutico , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Senescência Celular/efeitos dos fármacos , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Ftalazinas/farmacologia , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA