Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Acta Trop ; 257: 107320, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002739

RESUMO

PURPOSE: The polarization of macrophages with the resulting inflammatory response play a crucial part in tissue and organ damage due to inflammatory. Study has proved Lian Hua Qing Wen capsules (LHQW) can reduce activation of inflammatory response and damage of tissue derived from the inflammatory reactions. However, the mechanism of LHQW regulates the macrophage-induced inflammatory response is unclear. Therefore, we investigated the mechanism of LHQW regulated the inflammatory response of M1 macrophages by cellular experiments and computer simulations. METHODS: This study has analysed the targets and mechanisms of macrophage regulating inflammatory response at gene and protein levels through bioinformatics. The monomeric components of LHQW were analyzed by High Performance Liquid Chromatography (HPLC). We established the in vitro cell model by M1 macrophages (Induction of THP-1 cells into M1 macrophages). RT-qPCR and immunofluorescence were used to detect changes in gene and protein levels of key targets after LHQW treatment. Computer simulations were utilized to verify the binding stability of monomeric components and protein targets. RESULTS: Macrophages had 140,690 gene targets, inflammatory response had 12,192 gene targets, intersection gene targets were 11,772. Key monomeric components (including: Pinocembrin, Fargesone-A, Nodakenin and Bowdichione) of LHQW were screened by HPLC. The results of cellular experiments indicated that LHQW could significantly reduce the mRNA expression of CCR5, CSF2, IFNG and TNF, thereby alleviating the inflammatory response caused by M1 macrophage. The computer simulations further validated the binding stability and conformation of key monomeric components and key protein targets, and IFNG/Nodakenin was able to form the most stable binding conformation for its action. CONCLUSION: In this study, the mechanism of LHQW inhibits the polarization of macrophages and the resulting inflammatory response was investigated by computer simulations and cellular experiments. We found that LHQW may not only reduce cell damage and death by acting on TNF and CCR5, but also inhibit the immune recognition process and inflammatory response by regulating CSF2 and IFNG to prevent polarization of macrophages. Therefore, these results suggested that LHQW may act through multiple targets to inhibit the polarization of macrophages and the resulting inflammatory response.


Assuntos
Simulação por Computador , Medicamentos de Ervas Chinesas , Macrófagos , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Inflamação , Anti-Inflamatórios/farmacologia , Células THP-1 , Biologia Computacional , Cromatografia Líquida de Alta Pressão
2.
Am J Cancer Res ; 14(6): 2770-2789, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39005688

RESUMO

Chronic myeloid leukemia (CML) is a common hematopoietic malignancy in adults. Great progress has been made in CML therapy with imatinib. However, resistance to imatinib may occur during treatment. BCR::ABL1 dependent imatinib resistance has been well resolved with more potent tyrosine kinase inhibitors, but BCR::ABL1 independent resistance still remains to be resolved. This study is devoted to find novel targets for BCR::ABL1 independent imatinib-resistant patients. It is reported BCR::ABL1 independent resistance is mainly related to the activation of alternative survival pathway, and mTOR is an important regulator for cell growth especially in tumor cells. Hence, we explored the role of mTOR in BCR::ABL1 independent resistance, the possibility of mTOR to be a therapeutic target for imatinib resistant patients and the related mechanism. We found mTOR was upregulated in imatinib-resistant cells. mTOR inhibition by AZD2014 led to growth inhibition and synergized with imatinib in apoptosis induction in K562/G01. AZD2014 exerted its anti-leukemia effect through enhancing autophagy. mTOR signal pathway is poorly inhibited by imatinib and AZD2014 shows little effect on BCR::ABL1 signal pathway, which indicates that mTOR is involved in imatinib resistance via a BCR::ABL1 independent manner. Taken together, mTOR represents a potential target to overcome BCR::ABL1 independent imatinib resistance.

3.
Cancer Med ; 13(12): e7388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924330

RESUMO

BACKGROUND: To date, carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) have been widely used for the screening, diagnosis and prediction of biliary tract cancer (BTC) patients. However, few studies with large sample sizes of carbohydrate antigen 50 (CA50) were reported in BTC patients. METHODS: A total of 1121 patients from the Liver Cancer Clin-Bio Databank of Anhui Hepatobiliary Surgery Union between January 2017 and December 2022 were included in this study (673 in the training cohort and 448 in the validation cohort): among them, 458 with BTC, 178 with hepatocellular carcinoma (HCC), 23 with combined hepatocellular-cholangiocarcinoma, and 462 with nontumor patients. Receiver operating characteristic (ROC) curves and decision curve analysis (DCA) were used to evaluate the diagnostic efficacy and clinical usefulness. RESULTS: ROC curves obtained by combining CA50, CA19-9, and AFP showed that the AUC value of the diagnostic MODEL 1 was 0.885 (95% CI 0.856-0.885, specificity 70.3%, and sensitivity 84.0%) in the training cohort and 0.879 (0.841-0.917, 76.7%, and 84.3%) in the validation cohort. In addition, comparing iCCA and HCC (235 in the training cohort, 157 in the validation cohort), the AUC values of the diagnostic MODEL 2 were 0.893 (95% CI 0.853-0.933, specificity 96%, and sensitivity 68.6%) in the training cohort and 0.872 (95% CI 0.818-0.927, 94.2%, and 64.6%) in the validation cohort. CONCLUSION: The model combining CA50, CA19-9, and AFP not only has good diagnostic value for BTC but also has good diagnostic value for distinguishing iCCA and HCC.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Neoplasias do Sistema Biliar , Biomarcadores Tumorais , Curva ROC , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos Glicosídicos Associados a Tumores/sangue , Neoplasias do Sistema Biliar/diagnóstico , Neoplasias do Sistema Biliar/sangue , Biomarcadores Tumorais/sangue , Antígeno CA-19-9/sangue , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/sangue , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangue , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangue , Estudos Retrospectivos , Sensibilidade e Especificidade
4.
Cell Commun Signal ; 22(1): 314, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849885

RESUMO

BACKGROUND: Abnormally expressed BCR/ABL protein serves as the basis for the development of chronic myeloid leukaemia (CML). The F-actin binding domain (FABD), which is a crucial region of the BCR/ABL fusion protein, is also located at the carboxyl end of the c-ABL protein and regulates the kinase activity of c-ABL. However, the precise function of this domain in BCR/ABL remains uncertain. METHODS: The FABD-deficient adenovirus vectors Ad-BCR/ABL△FABD, wild-type Ad-BCR/ABL and the control vector Adtrack were constructed, and 32D cells were infected with these adenoviruses separately. The effects of FABD deletion on the proliferation and apoptosis of 32D cells were evaluated by a CCK-8 assay, colony formation assay, flow cytometry and DAPI staining. The levels of phosphorylated BCR/ABL, p73, and their downstream signalling molecules were detected by western blot. The intracellular localization and interaction of BCR/ABL with the cytoskeleton-related protein F-actin were identified by immunofluorescence and co-IP. The effect of FABD deletion on BCR/ABL carcinogenesis in vivo was explored in CML-like mouse models. The degree of leukaemic cell infiltration was observed by Wright‒Giemsa staining and haematoxylin and eosin (HE) staining. RESULTS: We report that the loss of FABD weakened the proliferation-promoting ability of BCR/ABL, accompanied by the downregulation of BCR/ABL downstream signals. Moreover, the deletion of FABD resulted in a change in the localization of BCR/ABL from the cytoplasm to the nucleus, accompanied by an increase in cell apoptosis due to the upregulation of p73 and its downstream proapoptotic factors. Furthermore, we discovered that the absence of FABD alleviated leukaemic cell infiltration induced by BCR/ABL in mice. CONCLUSIONS: These findings reveal that the deletion of FABD diminished the carcinogenic potential of BCR/ABL both in vitro and in vivo. This study provides further insight into the function of the FABD domain in BCR/ABL.


Assuntos
Apoptose , Proliferação de Células , Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Animais , Humanos , Camundongos , Apoptose/genética , Actinas/metabolismo , Carcinogênese/genética , Domínios Proteicos , Linhagem Celular Tumoral
5.
Toxics ; 12(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38787142

RESUMO

One of the main barriers to the successful treatment of laryngeal squamous cell carcinoma (LSCC) is postoperative progression, primarily due to tumor cell metastasis. To systematically investigate the molecular characteristics and potential mechanisms underlying the metastasis in laryngeal cancer, we carried out a TMT-based proteomic analysis of both cancerous and adjacent non-cancerous tissues from 10 LSCC patients with lymph node metastasis (LNM) and 10 without. A total of 5545 proteins were quantified across all samples. We identified 57 proteins that were downregulated in LSCC with LNM, which were enriched in cell adhesion pathways, and 69 upregulated proteins predominantly enriched in protein production pathways. Importantly, our data revealed a strong correlation between increased ribosomal activity and the presence of LNM, as 18 ribosomal subunit proteins were found to be upregulated, with RPS10 and RPL24 being the most significantly overexpressed. The potential of ribosomal proteins, including RPS10 and RPL24, as biomarkers for LSCC with LNM was confirmed in external validation samples (six with LNM and six without LNM) using Western blotting and immunohistochemistry. Furthermore, we have confirmed that the RNA polymerase I inhibitor CX-5461, which impedes ribosome biogenesis in LSCC, also decreases the expression of RPS10, RPL24, and RPS26. In vitro experiments have revealed that CX-5461 moderately reduces cell viability, while it significantly inhibits the invasion and migration of LSCC cells. It can enhance the expression of the epithelial marker CDH1 and suppress the expression of the mesenchymal markers CDH2, VIM, and FN at a dose that does not affect cell viability. Our study broadens the scope of the proteomic data on laryngeal cancer and suggests that ribosome targeting could be a supplementary therapeutic strategy for metastatic LSCC.

6.
BMC Pediatr ; 24(1): 255, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627752

RESUMO

BACKGROUND: Physiological processes rely on phosphate, which is an essential component of adenosine triphosphate (ATP). Hypophosphatasia can affect nearly every organ system in the body. It is crucial to monitor newborns with risk factors for hypophosphatemia and provide them with the proper supplements. We aimed to evaluate the risk factors and develop a nomogram for early hypophosphatemia in term infants. METHODS: We conducted a retrospective study involving 416 term infants measured serum phosphorus within three days of birth. The study included 82 term infants with hypophosphatemia (HP group) and 334 term infants without hypophosphatemia (NHP group). We collected data on the characteristics of mothers, newborn babies, and childbirth. Furthermore, univariate and multivariate logistic regression analyses were performed to identify independent risk factors for hypophosphatemia in term infants, and a nomogram was developed and validated based on the final independent risk factors. RESULTS: According to our analysis, the multivariate logistic regression analysis showed that male, maternal diabetes, cesarean delivery, lower serum magnesium, and lower birth weight were independent risk factors for early hypophosphatemia in term infants. In addition, the C-index of the developed nomogram was 0.732 (95% CI = 0.668-0.796). Moreover, the calibration curve indicated good consistency between the hypophosphatemia diagnosis and the predicted probability, and a decision curve analysis (DCA) confirmed the clinical utility of the nomogram. CONCLUSIONS: The analysis revealed that we successfully developed and validated a nomogram for predicting early hypophosphatemia in term infants.


Assuntos
Hipofosfatasia , Hipofosfatemia , Recém-Nascido , Lactente , Feminino , Gravidez , Masculino , Humanos , Nomogramas , Estudos Retrospectivos , Hipofosfatemia/diagnóstico , Hipofosfatemia/etiologia , Trifosfato de Adenosina
7.
Sci Total Environ ; 926: 172081, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554961

RESUMO

Mature compost can promote the transformation of organic matter (OM) and reduce the emission of polluting gases during composting, which provides a viable approach to reduce the environmental impacts of biodegradable plastics (BPs). This study investigated the impact of mature compost on polybutylene adipate terephthalate (PBAT) degradation, greenhouse gas (GHG) emission, and microbial community structure during composting under two treatments with mature compost (MC) and without (CK). Under MC, visible plastic rupture was advanced from day 14 to day 10, and a more pronounced rupture was observed at the end of composting. Compared with CK, the degradation rate of PBAT in MC was increased by 4.44 % during 21 days of composting. Thermobifida, Ureibacillus, and Bacillus, as indicator species under MC treatment, played an important role in PBAT decomposition. Mature compost reduced the total global warming potential (GWP) by 25.91 % via inhibiting the activity of bacteria related to the production of CH4 and N2O. Functional Annotation of Prokaryotic Taxa (FAPROTAX) further revealed that mature compost addition increased relative abundance of bacteria related to multiple carbon (C) cycle functions such as methylotrophy, hydrocarbon degradation and cellulolysis, inhibited nitrite denitrification and denitrification, thus alleviating the emission of GHGs. Overall, mature compost, as an effective additive, exhibits great potential to simultaneously mitigate BP and GHG secondary pollution in co-composting of food waste and PBAT.


Assuntos
Plásticos Biodegradáveis , Compostagem , Gases de Efeito Estufa , Eliminação de Resíduos , Gases de Efeito Estufa/análise , Perda e Desperdício de Alimentos , Alimentos , Solo/química , Metano/análise , Esterco
8.
Phys Chem Chem Phys ; 26(4): 3110-3116, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38189422

RESUMO

Based on first-principles calculations, we predict a class of graphene-like magnetic materials, transition metal carbonitrides MN4C6 (M = Cr, Mn, Fe, and Co), which are made up of a benzene ring and an MN4 moiety, two common planar units in the compounds. The structural stability is demonstrated by the phonon and molecular dynamics calculations, and the formation mechanism of the planar geometry of MN4C6 is ascribed to the synergistic effect of sp2 hybridization, M-N coordination bond, and π-d conjugation. The MN4C6 materials consist of only one layer of atoms and the transition metal atom is located in the planar crystal field, which is markedly different from most two-dimensional materials. The calculations indicate that MnN4C6, FeN4C6, and CoN4C6 are ferromagnetic while CrN4C6 has an antiferromagnetic ground state. The Curie temperatures are estimated by solving the anisotropic Heisenberg model with the Monte Carlo method.

9.
Radiother Oncol ; 190: 110023, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995850

RESUMO

OBJECTIVES: Examine the significance of contouring the brachial plexus (BP) for toxicity estimation and select metrics for predicting radiation-induced brachial plexopathy (RIBP) after stereotactic body radiotherapy. MATERIALS AND METHODS: Patients with planning target volume (PTV) ≤ 2 cm from the BP were eligible. The BP was contoured primarily according to the RTOG 1106 atlas, while subclavian-axillary veins (SAV) were contoured according to RTOG 0236. Apical PTVs were classified as anterior (PTV-A) or posterior (PTV-B) PTVs. Variables predicting grade 2 or higher RIBP (RIBP2) were selected through least absolute shrinkage and selection operator regression and logistic regression. RESULTS: Among 137 patients with 140 BPs (median follow-up, 32.1 months), 11 experienced RIBP2. For patients with RIBP2, the maximum physical dose to the BP (BP-Dmax) was 46.5 Gy (median; range, 35.7 to 60.7 Gy). Of these patients, 54.5 % (6/11) satisfied the RTOG limits when using SAV delineation; among them, 83.3 % (5/6) had PTV-B. For patients with PTV-B, the maximum physical dose to SAV (SAV-Dmax) was 11.2 Gy (median) lower than BP-Dmax. Maximum and 0.3 cc biologically effective doses to the BP based on the linear-quadratic-linear model (BP-BEDmax LQL and BP-BED0.3cc LQL, α/ß = 3) were selected as predictive variables with thresholds of 118 and 73 Gy, respectively. CONCLUSION: Contouring SAV may significantly underestimate the RIBP2 risk in dosimetry, especially for patients with PTV-B. BP contouring indicated BP-BED0.3cc LQL and BP-BEDmax LQL as potential predictors of RIBP2.


Assuntos
Neuropatias do Plexo Braquial , Lesões por Radiação , Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Dosagem Radioterapêutica , Órgãos em Risco , Neuropatias do Plexo Braquial/etiologia , Planejamento da Radioterapia Assistida por Computador
10.
Sci Rep ; 13(1): 21357, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049463

RESUMO

Although the role of T cells in tumor immunity and modulation of the tumor microenvironment (TME) has been extensively studied, their precise involvement in gastric adenocarcinoma remains inadequately explored. In this work, we analyzed the single-cell RNA sequencing data set in GSE183904 and identified 322 T cell marker genes using the "FindAllMarkers" method of the R package "Seurat". STAD patients in the TCGA database were divided into high-risk and low-risk categories based on risk scores. The five-gene prediction signature based on T cell marker genes can predict the prognosis of gastric cancer patients with high accuracy. In the training cohort, the areas under the receiver operating characteristic (ROC) curve were 0.667, 0.73, and 0.818 at 1, 3, and 5 years. External validation of the predictive signature was also performed using multiple clinical subgroups and GEO cohorts. To help with practical application, a diagnostic model was created that shows values of 0.732, 0.752, and 0.816 for the relevant areas under the ROC curve at 1, 3, and 5 years. The T cell marker genes identified in this study may serve as potential therapeutic targets, and the developed predictive signatures and nomograms may aid in the clinical management of gastric cancer.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Prognóstico , Imunoterapia , Nomogramas , Complexo CD3 , Microambiente Tumoral/genética
11.
Mol Cell Proteomics ; 22(9): 100628, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532176

RESUMO

Cholesteatoma is a chronic inflammatory ear disease with abnormal keratinized epithelium proliferation and tissue damage. However, the mechanism of keratinized epithelium hyperproliferation in cholesteatoma remains unknown. Hence, our study sought to shed light on mechanisms affecting the pathology and development of cholesteatoma, which could help develop adjunctive treatments. To investigate molecular changes in cholesteatoma pathogenesis, we analyzed clinical cholesteatoma specimens and paired ear canal skin with mass spectrometry-based proteomics and bioinformatics. From our screen, alpha-synuclein (SNCA) was overexpressed in middle ear cholesteatoma and might be a key hub protein associated with inflammation, proliferation, and autophagy in cholesteatoma. SNCA was more sensitive to lipopolysaccharide-induced inflammation, and autophagy marker increase was accompanied by autophagy activation in middle ear cholesteatoma tissues. Overexpression of SNCA activated autophagy and promoted cell proliferation and migration, especially under lipopolysaccharide inflammatory stimulation. Moreover, inhibiting autophagy impaired SNCA-mediated keratinocyte proliferation and corresponded with inhibition of the PI3K/AKT/CyclinD1 pathways. Also, 740Y-P, a PI3K activator reversed the suppression of autophagy and PI3K signaling by siATG5 in SNCA-overexpressing cells, which restored proliferative activity. Besides, knockdown of SNCA in RHEK-1 and HaCaT cells or knockdown of PI3K in RHEK-1 and HaCaT cells overexpressing SNCA both resulted in attenuated cell proliferation. Our studies indicated that SNCA overexpression in cholesteatoma might maintain the proliferative ability of cholesteatoma keratinocytes by promoting autophagy under inflammatory conditions. This suggests that dual inhibition of SNCA and autophagy may be a promising new target for treating cholesteatoma.


Assuntos
Colesteatoma da Orelha Média , Humanos , Colesteatoma da Orelha Média/metabolismo , Colesteatoma da Orelha Média/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos , Proteômica , Transdução de Sinais , Proliferação de Células , Autofagia , Inflamação , alfa-Sinucleína
12.
Opt Express ; 31(4): 6974-6981, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823943

RESUMO

A sulfur dioxide (SO2) gas sensor based on the photoacoustic spectroscopy technology in a sulfur hexafluoride (SF6) gas matrix was demonstrated for SF6 decomposition components monitoring in the power system. A passive Q-switching laser diode (LD) pumped all-solid-state 266 nm deep-ultraviolet laser was exploited as the laser excitation source. The photoacoustic signal amplitude is linear related to the incident optical power, whereas, a random laser power jitter is inevitable since the immature laser manufacturing technology in UV spectral region. A compact laser power stabilization system was developed for better sensor performance by adopting a photodetector, a custom-made internal closed-loop feedback controller and a Bragg acousto-optic modulator (AOM). The out-power stability of 0.04% was achieved even though the original power stability was 0.41% for ∼ 2 hours. A differential two-resonator photoacoustic cell (PAC) was designed for weak photoacoustic signal detection. The special physical constants of SF6 buffer gas induced a high-Q factor of 85. A detection limit of 140 ppbv was obtained after the optimization, which corresponds to a normalized noise equivalent absorption coefficient of 3.2 × 10-9 cm-1WHz-1/2.

13.
Cell Commun Signal ; 21(1): 27, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721266

RESUMO

BACKGROUND: The Philadelphia chromosome encodes the BCR-ABL fusion protein, which has two primary subtypes, P210 and P190. P210 and P190 cause Philadelphia-positive chronic myeloid leukemia (Ph+ CML) and Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL), respectively. The Ph+ ALL is more malignant than Ph+ CML in disease phenotype and progression. This implies the key pathogenic molecules and regulatory mechanisms caused by BCR-ABL in two types of leukemia are different. It is reported that STAT6 was significantly activated only in P190 transformed cells. However, the potential role and the mechanism of STAT6 activation in Ph+ ALL and its activation mechanism by P190 are still unknown. METHODS: The protein and mRNA levels of STAT6, c-Myc, and other molecules were measured by western blot and quantitative real-time PCR. The STAT6 inhibitor AS1517499 was used to specifically inhibit p-STAT6. The effect of p-STAT6 inhibition on Ph+ CML and Ph+ ALL cells was identified by CCK-8 and FCM assay. Dual luciferase reporter and ChIP assay were performed to confirm the direct binding between STAT6 and c-Myc. The impact of STAT6 inhibition on tumor progression was detected in Ph+ CML and Ph+ ALL mouse models. RESULTS: Our results demonstrated that P210 induced CML-like disease, and P190 caused the more malignant ALL-like disease in mouse models. STAT6 was activated in P190 cell lines but not in P210 cell lines. Inhibition of STAT6 suppressed the malignancy of Ph+ ALL in vitro and in vivo, whereas it had little effect on Ph+ CML. We confirmed that p-STAT6 regulated the transcription of c-Myc, and STAT6 was phosphorylated by p-Jak2 in P190 cell lines, which accounted for the discrepant expression of p-STAT6 in P190 and P210 cell lines. STAT6 inhibition synergized with imatinib in Ph+ ALL cells. CONCLUSIONS: Our study suggests that STAT6 activation plays an essential role in the development of Ph+ ALL and may be a potential therapeutic target in Ph+ ALL. Video abstract.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Camundongos , Virulência , Bioensaio , Linhagem Celular , Fator de Transcrição STAT6
14.
Bioresour Technol ; 370: 128581, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608857

RESUMO

The potential of palm oil and derived wastewater pretreated by enzyme as co-substrates to accumulate polyhydroxyalkanoate (PHA) rich in short and medium-chain-length monomers under two feeding strategies was evaluated batchwise through mixed microbial cultures (MMCs) in activated sludge. A terpolymer with the maximum PHA content of 30.5 wt%, volumetric yield of 0.372 g COD/g COD and composition of ca. 84.7 âˆ¼ 97.4/0.5 âˆ¼ 1.6/2.1 âˆ¼ 13.7 (3-hydroxybutyrate/ 3-hydroxyvalerate/ 3-hydroxyoctanoate, %) was achieved as a result of co-substrate incorporation. From the perspective of economic benefits, PHA accumulated via adopting strategy of supplementing carbon source to the same initial concentration per cycle saved 42.7 % of carbon consumption, along with a reduction in culture time (72 h). The above discoveries signify that the combination of palm oil and derived wastewater plus MMCs provides an alternative to the plastics industries for a more sustainable and efficient utilization of biological resources and an economic PHA accumulation approach.


Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Esgotos , Poli-Hidroxialcanoatos/metabolismo , Óleo de Palmeira , Reatores Biológicos
16.
Environ Sci Pollut Res Int ; 29(53): 80683-80692, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35725882

RESUMO

Nanoscale zero-valent iron (nZVI) has been intensively studied for pollution control because of its high reductive activity and environmental benignity, but the poor reaction selectivity and the aging problem have limited its practical decontamination application. Here, we shed light on the impacts of nZVI shell structure on its reactivity and air stability by systematically comparing two nZVI materials with distinct iron oxide shells. The nZVI with highly crystalline and weakly hydrophilic shell exhibited ninefold higher intrinsic activity for nitrate reduction and significantly improved air stability than that with amorphous, hydrophilic iron hydroxide oxide shell. The compact-structured crystalline shell of nZVI facilitated more efficient interfacial electronic transfer for nitrate reduction and suppressed side reaction of hydrogen evolution. The protective hematite shell endowed the nZVI with significantly improved anti-aging ability, and the reducing force remained 92.6% after exposed to air for 10 days due to decreased oxygen diffusion. This work provides a better understanding of the pollutant degradation behavior of nZVI and may guide an improved synthesis and environmental application of nZVI.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Ferro/química , Nitratos/química , Óxidos de Nitrogênio , Hidróxidos , Hidrogênio , Oxigênio , Poluentes Químicos da Água/análise
17.
Exp Hematol Oncol ; 11(1): 33, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624462

RESUMO

BACKGROUND: With the widespread clinical application of tyrosine kinase inhibitors (TKIs), an increasing number of chronic myeloid leukaemia (CML) patients have developed resistance or intolerance to TKIs. BCR/ABL is the oncoprotein of CML. HSP90 is an essential chaperone of BCR/ABL and plays an important role in protein folding and the function of BCR/ABL. Therefore, inhibiting the chaperone function of HSP90 may be an effective strategy for CML treatment and to overcome TKI resistance. METHODS: The effect of KW-2478 on CML cell viability, apoptosis and cell cycle progression was detected by CCK-8 assay or flow cytometry. The levels of BCR/ABL, HSP90 and other signalling proteins were detected by western blots. The mitochondrial membrane potential was detected by flow cytometry combined with JC-1 staining. The interaction between BCR/ABL and HSP90α was detected by coimmunoprecipitation. The effect of KW-2478 on BCR/ABL carcinogenesis in vivo was investigated in CML-like mouse models. RESULTS: KW-2478 inhibited growth and induced apoptosis of CML cells. KW-2478 inhibited the chaperone function of HSP90α and then weakened the BCR/ABL and MAPK signalling pathways. This treatment also caused an increase in p27 and p21 expression and a decrease in cyclin B1 expression, which led to G2/M phase arrest. The mitochondrial pathway was primarily responsible for KW-2478-induced apoptosis. KW-2478 had a synergistic effect with imatinib in growth inhibition. Notably, KW-2478 had a stronger effect on growth inhibition, apoptosis induction and cell cycle arrest of K562/G01 cells than K562 cells. KW-2478 could effectively prolong the mouse lifespan and alleviate disease symptoms in CML-like mouse models. CONCLUSIONS: This finding demonstrated that KW-2478 had anticancer properties in imatinib-sensitive and imatinib-resistant CML cells and illustrated the possible mechanisms. This study provides an alternative choice for CML treatment, especially for TKI-resistant patients with BCR/ABL amplification and TKI-intolerant patients.

19.
Photoacoustics ; 25: 100319, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34934620

RESUMO

In SF6 insulated high-voltage gas power systems, H2O is the most problematic impurity which not only decreases insulation performance but also creates an acidic atmosphere that promotes corrosion. Corrosion damages electrical equipment and leads to leaks, which pose serious safety hazards to people and the environment. A QEPAS-based sensor system for the sub-ppm level H2O detection in SF6 buffer gas was developed by use of a near-infrared commercial DFB diode laser. Since the specific physical constants of SF6 are strongly different from that of N2 or air, the resonant frequency and Q-factor of the bare quartz tuning fork (QTF) had changed to 32,763 Hz and 4173, respectively. The optimal vertical detection position was 1.2 mm far from the QTF opening. After the experimental optimization of acoustic micro-resonator (AmR) parameters, gas pressures, and modulation depths, a detection limit of 0.49 ppm was achieved for an averaging time of 1 s, which provided a powerful prevention tool for the safety monitoring in power systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA