RESUMO
Cell cycle transitions are controlled by multiple cell cycle regulators, especially CDKs. Several CDKs, including CDK1-4 and CDK6, promote cell cycle progression directly. Among them, CDK3 is critically important because it triggers the transitions of G0 to G1 and G1 to S phase through binding to cyclin C and cyclin E1, respectively. In contrast to its highly related homologs, the molecular basis of CDK3 activation remains elusive due to the lack of structural information of CDK3, particularly in cyclin bound form. Here we report the crystal structure of CDK3 in complex with cyclin E1 at 2.25 Å resolution. CDK3 resembles CDK2 in that both adopt a similar fold and bind cyclin E1 in a similar way. The structural discrepancy between CDK3 and CDK2 may reflect their substrate specificity. Profiling a panel of CDK inhibitors reveals that dinaciclib inhibits CDK3-cyclin E1 potently and specifically. The structure of CDK3-cyclin E1 bound to dinaciclib reveals the inhibitory mechanism. The structural and biochemical results uncover the mechanism of CDK3 activation by cyclin E1 and lays a foundation for structural-based drug design.
Assuntos
Indolizinas , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Quinase 2 Dependente de Ciclina , Indolizinas/farmacologia , Compostos de Piridínio/farmacologia , Ciclo Celular/fisiologia , Ciclina E/metabolismo , Ciclinas/metabolismoRESUMO
The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global crisis. Replication of SARS-CoV-2 requires the viral RNA-dependent RNA polymerase (RdRp) enzyme, a target of the antiviral drug remdesivir. Here we report the cryo-electron microscopy structure of the SARS-CoV-2 RdRp, both in the apo form at 2.8-angstrom resolution and in complex with a 50-base template-primer RNA and remdesivir at 2.5-angstrom resolution. The complex structure reveals that the partial double-stranded RNA template is inserted into the central channel of the RdRp, where remdesivir is covalently incorporated into the primer strand at the first replicated base pair, and terminates chain elongation. Our structures provide insights into the mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/química , Betacoronavirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/metabolismo , Alanina/farmacologia , Antivirais/metabolismo , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/fisiologia , Domínio Catalítico , RNA-Polimerase RNA-Dependente de Coronavírus , Microscopia Crioeletrônica , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Complexos Multiproteicos/química , Conformação Proteica , RNA Viral/química , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo , Replicação ViralRESUMO
Osimertinib has been approved as a first-line treatment for non-small-cell lung cancer (NSCLC) patients whose tumor carries EGFR activation and / or resistant mutations. To mitigate Osimertinib's toxicity caused by AZ5104, the N-demethylation metabolite of Osimertinib, we designed and synthesized a series of Osimertinib analogs with different headpieces. In vitro and in vivo analysis rendered a potential clinical candidate C-005 which had pyrrolo-pyridine headpiece. Biochemically, C-005 and its main human hepatocyte metabolite showed over 30 fold selectivity of L858R/T790M mutant EGFR over WT EGFR. Such selectivity profile was retained at cellular level. In general, C-005 is 2-14 fold more selective than Osimertinib in a panel of WT EGFR cancer cell lines. Furthermore, C-005 demonstrated robust antitumor efficacy and good tolerability in NCI-H1975, PC-9 and HCC827 xenograft mouse models, making it a potential candidate for human test in clinical.