Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Small ; 20(24): e2306389, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168513

RESUMO

In view of the increased levels of reactive oxygen species (ROS) that disturb the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), the repair of diabetic bone defects remains a great challenge. Herein, a factor-free hydrogel is reported with ROS scavenging and responsive degradation properties for enhanced diabetic bone healing. These hydrogels contain ROS-cleavable thioketal (TK) linkers and ultraviolet (UV)-responsive norbornene (NB) groups conjugated with 8-arm PEG macromers, which are formed via UV crosslinking-mediated gelation. Upon reacting with high levels of ROS in the bone defect microenvironment, ROS-cleavable TK linkers are destroyed, allowing the responsive degradation of hydrogels, which promotes the migration of BMSCs. Moreover, ROS levels are reduced through hydrogel-mediated ROS scavenging to reverse BMSC differentiation from adipogenic to osteogenic phenotype. As such, a favorable microenvironment is created after simultaneous ROS scavenging and hydrogel degradation, leading to the effective repair of bone defects in diabetic mouse models, even without the addition of growth factors. Thus, this study presents a responsive hydrogel platform that regulates ROS scavenging and stromal degradation in bone engineering.


Assuntos
Diferenciação Celular , Hidrogéis , Células-Tronco Mesenquimais , Osteogênese , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Hidrogéis/química , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Camundongos , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Cicatrização/efeitos dos fármacos , Osso e Ossos , Masculino
2.
Dis Markers ; 2022: 1360954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051356

RESUMO

Colorectal cancer (CRC) is becoming increasingly prevalent worldwide. Fluoropyrimidine drugs are the primary chemotherapy regimens in routine clinical practice of CRC. However, the survival rate of patients on fluoropyrimidine-based chemotherapy varies significantly among individuals. Biomarkers of fluoropyrimidine drugs'' efficacy are needed to implement personalized medicine. This review summarized fluoropyrimidine drug-related microRNA (miRNA) by affecting metabolic enzymes or showing the relevance of drug efficacy. We first outlined 42 miRNAs that may affect the metabolism of fluoropyrimidine drugs. Subsequently, we filtered another 41 miRNAs related to the efficacy of fluoropyrimidine drugs based on clinical trials. Bioinformatics analysis showed that most well-established miRNA biomarkers were significantly enriched in the cancer pathways instead of the fluoropyrimidine drug metabolism pathways. The result also suggests that the miRNAs screened from metastasis patients have a more critical role in cancer development than those from non-metastasis patients. There are five miRNAs shared between these two lists. The miR-21, miR-215, and miR-218 can suppress fluoropyrimidine drugs'' catabolism. The miR-326 and miR-328 can reduce the efflux of fluoropyrimidine drugs. These five miRNAs could jointly act by increasing intracellular levels of fluoropyrimidine drugs'' cytotoxic metabolites, leading to better chemotherapy responses. In conclusion, we demonstrated that the dynamic changes in the transcriptional regulation via miRNAs might play significant roles in the efficacy and toxicity of the fluoropyrimidine drug. The reported miRNA biomarkers would help evaluate the efficacy of fluoropyrimidine drug-based chemotherapy and improve the prognosis of colorectal cancer patients.


Assuntos
Antineoplásicos , Neoplasias Colorretais , MicroRNAs , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico
3.
Integr Cancer Ther ; 21: 15347354221105485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686441

RESUMO

BACKGROUND: Chemotherapy-induced adverse effects (CIAEs) remain a challenging problem due to their high incidences and negative impacts on treatment in Chinese colorectal cancer (CRC) patients. We aimed to identify risk factors and predictive markers for CIAEs using food/nutrition data in CRC patients receiving post-operative capecitabine-based chemotherapy. METHODS: Food/nutrition data from 130 Chinese CRC patients were analyzed. Univariate and multivariate analyses were used to identify CIAE-related food/nutrition factors. Prediction models were constructed based on the combination of these factors. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the discrimination ability of models. RESULTS: A total of 20 food/nutrition factors associated with CIAEs were identified in the univariate analysis after adjustments for total energy and potential confounding factors. Based on multivariate analysis, we found that, among these factors, dessert, eggs, poultry, and milk were associated with several CIAEs. Most importantly, poultry was an overall protective factor; milk and egg were risk factors for hand-foot syndrome (HFS) and bone marrow suppression (BMS), respectively. Developed multivariate models in predicting grade 1 to 3 CIAEs and grade 2/3 CIAEs both had good discrimination (AUROC values from 0.671 to 0.778, 0.750 to 0.946 respectively), which had potential clinical application value in the early prediction of CIAEs, especially for more severe CIAEs. CONCLUSIONS: Our findings suggest that patients with high milk and egg intakes should be clinically instructed to control their corresponding dietary intake to reduce the likelihood of developing HFS and BMS during capecitabine-based chemotherapy, respectively. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03030508.


Assuntos
Antimetabólitos Antineoplásicos , Capecitabina , Neoplasias Colorretais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Antimetabólitos Antineoplásicos/efeitos adversos , Capecitabina/efeitos adversos , China/epidemiologia , Neoplasias Colorretais/complicações , Neoplasias Colorretais/tratamento farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Ovos , Fluoruracila/efeitos adversos , Síndrome Mão-Pé/tratamento farmacológico , Síndrome Mão-Pé/etiologia , Humanos , Leite , Fatores de Risco
4.
Pharmacol Res ; 178: 106155, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35248699

RESUMO

The XELOX chemotherapy protocol that includes capecitabine and oxaliplatin is the routine treatment for colorectal cancer (CRC), but it can cause chemotherapy-related adverse events such as thrombocytopenia (TCP). To identify predictive biomarkers and clarify the mechanism of TCP susceptibility, we conducted integrative analysis using normal colorectal tissue (CRT), plasma, and urine samples collected before CRC patients received adjuvant XELOX chemotherapy. RNA-sequencing and DNA methylation arrays were performed on CRT samples, while liquid chromatography-mass spectrometry was performed on CRT, plasma, and urine samples. Differentially expressed features (DEFs) from each uni-omics analysis were then subjected to integrative analysis using Multi-Omics Factor Analysis (MOFA). Choline-deficiency in plasma and CRT was found as the most critical TCP-related feature. Based on bioinformatic analysis and literature research, we further concluded that choline-deficiency was the possible reason for most of the other TCP-related multi-omics DEFs, including metabolites representing reduced sphingolipid de novo synthesis and elevated solute carrier-mediated transmembrane transportation in CRT and plasma, DNA hypermethylation and elevated expression of genes involved in neuronal system genes. In terms of thrombocytopoiesis, these TCP-related DEFs may cause atypical maintenance and differentiation of megakaryocyte, resulting a suppressed ability of thrombocytopoiesis, making patients more susceptible to chemotherapy-induced TCP. At last, prediction models were developed and validated with reasonably good discrimination. The area under curves (AUCs) of training sets were all > 0.9, while validation sets had AUCs between 0.778 and 0.926. In conclusion, our results produced reliable marker systems for predicting TCP and promising target for developing precision treatment to prevent TCP.


Assuntos
Antineoplásicos , Deficiência de Colina , Neoplasias Colorretais , Leucopenia , Trombocitopenia , Antineoplásicos/efeitos adversos , Colina , Deficiência de Colina/induzido quimicamente , Deficiência de Colina/tratamento farmacológico , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fluoruracila/uso terapêutico , Humanos , Leucopenia/induzido quimicamente , Trombocitopenia/induzido quimicamente
5.
Front Pharmacol ; 12: 746910, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539419

RESUMO

Hand-foot syndrome (HFS) is a common capecitabine-based chemotherapy-related adverse event (CRAE) in patients with colorectal cancer (CRC). It is of great significance to comprehensively identify susceptible factors for HFS, and further to elucidate the biomolecular mechanism of HFS susceptibility. We performed an untargeted multi-omics analysis integrating DNA methylation, transcriptome, and metabolome data of 63 Chinese CRC patients who had complete CRAE records during capecitabine-based chemotherapy. We found that the metabolome changes for each of matched plasma, urine, and normal colorectal tissue (CRT) in relation to HFS were characterized by chronic tissue damage, which was indicated by reduced nucleotide salvage, elevated spermine level, and increased production of endogenous cytotoxic metabolites. HFS-related transcriptome changes of CRT showed an overall suppressed inflammation profile but increased M2 macrophage polarization. HFS-related DNA methylation of CRT presented gene-specific hypermethylation on genes mainly for collagen formation. The hypermethylation was accumulated in the opensea and shore regions, which elicited a positive effect on gene expression. Additionally, we developed and validated models combining relevant biomarkers showing reasonably good discrimination performance with the area under the receiver operating characteristic curve values from 0.833 to 0.955. Our results demonstrated that the multi-omics variations associated with a profibrotic phenotype were closely related to HFS susceptibility. HFS-related biomolecular variations in CRT contributed more to the relevant biomolecular mechanism of HFS than in plasma and urine. Spermine-related DNA hypermethylation and elevated expression of genes for collagen formation were closely associated with HFS susceptibility. These findings provided new insights into the susceptible factors for chemotherapy-induced HFS, which can promote the implementation of individualized treatment against HFS.

6.
Stem Cells Int ; 2021: 8546739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976071

RESUMO

Teriparatide, also known as 1-34 parathyroid hormone (PTH (1-34)), is commonly used for the treatment of osteoporosis in postmenopausal women. But its therapeutic application is restricted by poor metabolic stability, low bioavailability, and rapid clearance. Herein, PTHG2, a glycosylated teriparatide derivative, is designed and synthesized to improve PTH stability and exert more potent antiosteoporosis effect. Surface plasmon resonance (SPR) analysis shows that PTHG2 combines to PTH 1 receptor. Additional acetylglucosamine covalent bonding in the first serine at the N terminal of PTH (1-34) improves stability and increases protein hydrolysis resistance. Intermittent administration of PTHG2 preserves bone quality in ovariectomy- (OVX-) induced osteoporosis mice model, along with increased osteoblastic differentiation and bone formation, and reduced marrow adipogenesis. In vitro, PTHG2 inhibits adipogenic differentiation and promotes osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs). For molecular mechanism, PTHG2 directs BMSCs fate through stimulating the cAMP-PKA signaling pathway. Blocking PKA abrogates the pro-osteogenic effect of PTHG2. In conclusion, our study reveals that PTHG2 can accelerate osteogenic differentiation of BMSCs and inhibit adipogenic differentiation of BMSCs and show a better protective effect than PTH (1-34) in the treatment of osteoporosis.

7.
Front Cell Dev Biol ; 9: 787118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047499

RESUMO

Bone marrow mesenchymal stromal cells (BMSCs), identified as pericytes comprising the hematopoietic niche, are a group of heterogeneous cells composed of multipotent stem cells, including osteochondral and adipocyte progenitors. Nevertheless, the identification and classification are still controversial, which limits their application. In recent years, by lineage tracing and single-cell sequencing, several new subgroups of BMSCs and their roles in normal physiological and pathological conditions have been clarified. Key regulators and mechanisms controlling the fate of BMSCs are being revealed. Cross-talk among subgroups of bone marrow mesenchymal cells has been demonstrated. In this review, we focus on recent advances in the identification and classification of BMSCs, which provides important implications for clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA