Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Chem Toxicol ; 169: 113382, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116546

RESUMO

Beta-cypermethrin (ß-CYP) is a highly effective broad-spectrum insecticide that can potentially affect female reproduction. However, little is known about the effect of ß-CYP on uterine decidualisation, which is a vital process by which the uterus provides a suitable microenvironment for pregnancy maintenance. Therefore, we focused on the effect and mechanism of ß-CYP on endometrial decidualisation during early pregnancy in mice. The results indicated that the expression levels of HOXA10, BMP2, and IGFBP1 was significantly downregulated in the decidual tissue and primary endometrial stromal cells of pregnant and pseudopregnant mice following ß-CYP treatment. Serum E2 concentration was significantly increased, whereas P4 concentration and oestrogen receptor (ERα) and progesterone receptor (PRA) expression were significantly downregulated following ß-CYP exposure. The number of polyploid decidual cells was lower in the ß-CYP-treated group. Furthermore, ß-CYP significantly downregulated the protein expression levels of CDK4 and CDK6, and the mRNA expression levels of cyclin D3 and p21. The number of foetuses per female in the first litter was markedly reduced following exposure to ß-CYP. In summary, early pregnancy exposure to ß-CYP may result in defective endometrial decidualisation via compromised proliferation of uterine stromal cells and reduced expressions of cyclin D3, CDK4/6, and p21 in mice.


Assuntos
Decídua , Inseticidas , Lesões Pré-Natais , Piretrinas , Animais , Feminino , Camundongos , Gravidez , Ciclina D3/metabolismo , Regulação para Baixo , Receptor alfa de Estrogênio/metabolismo , Inseticidas/toxicidade , Piretrinas/toxicidade , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , RNA Mensageiro , Lesões Pré-Natais/induzido quimicamente , Decídua/efeitos dos fármacos , Decídua/patologia
2.
Yi Chuan ; 44(2): 168-177, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35210217

RESUMO

Long non-coding RNAs (lncRNAs), which belong to the non-protein-coding RNAs, are greater than 200 nt in length. Although they have been found to play crucial roles in the regulation of cell growth and development, cell metabolism and the development of diseases, they are rarely reported in decidualization. The objective of our study is to explore the expression of lincRNA AC027700.1 in the endometrium of early pregnant mice and its role in decidualization. The expression of AC027700.1 in uterine tissues at implantation sites and inter implantation sites on the 6th day of pregnancy were detected by qRT-PCR. The relative expression of AC027700.1 in an in vivo model of induced decidualization in pseudopregnant mice and in in vitro model of induced decidualization in primary stromal cells and nucleus/cytoplasmic fractions were detected by qRT-PCR. GO and KEGG analysis of downstream target genes were performed by GOseq and KOBAS, respectively. The results show that AC027700.1 expression is significantly increased in tissues at implantation sites on the 6th day of pregnancy and in decidualized endometrial tissues and stromal cells. Furthermore, AC027700.1 localizes in the nuclear fraction and the downstream targeted genes are mainly involved in autophagy, cell cycle and RNA transport pathways. This study revealed that lincRNA AC027700.1 may be involved in decidualization of endometrium in early pregnancy, but the specific role and regulatory mechanism remain to be further studied.


Assuntos
Decídua , RNA Longo não Codificante , Animais , Autofagia , Decídua/metabolismo , Implantação do Embrião , Endométrio/metabolismo , Feminino , Camundongos , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Estromais/metabolismo
3.
J Mol Med (Berl) ; 98(4): 555-567, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32072231

RESUMO

Embryo implantation is an essential and complex process in mammalian reproduction. However, little evidence has indicated the involvement of autophagy during embryo implantation. To determine the possible role of autophagy in uterine of pregnant mice during the peri-implantation stage, we first examined the expression of autophagy-related markers ATG5 and LC3 on day 4, 5, and 6 of pregnancy (D4, D5, and D6, respectively). Compared with expression on D4, downregulation of the autophagy-related markers was observed on D5 and D6, the days after the embryo attached to the receptivity endometrium. Further examination showed that autophagy-related markers ATG5, ATG12, LC3, cathepsin B, and P62 at the implantation site were significantly decreased when comparing with the inter-implantation site. Fewer number of autophagosomes at the implantation site were also observed by transmission electron microscopy. To confirm the functional role of autophagy during embryo implantation in mice, we administered the autophagy inhibitor 3-methyladenine and chloroquine to mice. After treated with 3-methyladenine, the expression of decidual markers HOXA10 and progesterone receptor were significantly reduced. Furthermore, a reduction in implantation sites and increase in the HOXA10 and PR protein levels were observed in response to chloroquine treatment. In addition, impaired uterine decidualization and dysregulation of the PR and HOXA10 protein levels was observed after autophagy inhibited by 3-methyladenine and chloroquine in in vivo artificial decidualization mouse model. In the last, LC3 and P62 were also observed in normal human proliferative, secretory, and decidua tissues. In conclusion, endometrial autophagy may be essential for embryo implantation, and it may be associated with endometrial decidualization during early pregnancy. KEY MESSAGE: • Autophagy-related markers were significantly decreased at implantation site. • Autophagy inhibition results in abnormal decidualization. • Autophagy is essential for embryo implantation.


Assuntos
Autofagia , Implantação do Embrião , Endométrio/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Biomarcadores , Decídua/metabolismo , Decídua/ultraestrutura , Endométrio/ultraestrutura , Feminino , Imunofluorescência , Imuno-Histoquímica , Masculino , Camundongos , Gravidez
4.
J Cell Physiol ; 234(4): 4154-4166, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30132880

RESUMO

Embryo implantation is essential for normal pregnancy, and the process of decidualization is critical for embryo implantation. However, the mechanism of decidualization during early pregnancy is still unknown. Forkhead box O3a (FOXO3a) is the most important functional transcription factor of the forkhead box family and is a highly conserved transcription factor of apoptosis-related genes. In the mouse uterus, FOXO3a was found to be expressed regularly from Days 1-7 of early pregnancy. Upon further exploration, it was found that FOXO3a was expressed at significantly higher levels at the implantation site than at the interimplantation site on Days 5-7 of pregnancy. Under artificial decidualization, FOXO3a was highly expressed in the first and second decidual zones. After decidualization, the expression of FOXO3a was significantly increased both in vivo and vitro. In primary stromal cells, apoptosis was reduced by decreased expression of FOXO3a after inducing decidualization. Moreover, when FOXO3a-small interfering RNA was transfected into the uteri of mice, the expression of decidualization- and apoptosis-related factors was impaired. Thus, FOXO3a might play an important role in decidualization during early pregnancy, and cell apoptosis might be one of pathways for FOXO3a-regulated decidualization.


Assuntos
Apoptose , Implantação do Embrião , Endométrio/metabolismo , Proteína Forkhead Box O3/metabolismo , Células Estromais/metabolismo , Aborto Espontâneo/metabolismo , Aborto Espontâneo/patologia , Animais , Feminino , Proteína Forkhead Box O3/genética , Humanos , Camundongos , Gravidez , Transdução de Sinais , Fatores de Tempo , Regulação para Cima
5.
Hum Reprod ; 31(10): 2339-51, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27604954

RESUMO

STUDY QUESTION: Does nm23 have functional significance in decidualization in mice and humans? SUMMARY ANSWER: nm23 affects decidualization via the phosphoinositide 3 kinase/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathways in mouse endometrial stromal cells (ESCs; mESCs) and human ESCs. WHAT IS KNOWN ALREADY: The function of nm23 in suppressing metastasis has been demonstrated in a variety of cancer types. nm23 also participates in the control of DNA replication and cell proliferation and differentiation. STUDY DESIGN, SIZE AND DURATION: We first analyzed the expression profile of nm23 in mice during early pregnancy (n = 6/group), pseudopregnancy (n = 6/group) and artificial decidualization (n = 6/group) and in humans during the menstrual cycle phases and the first trimester. We then used primary cultured mESCs and a human ESC line, T-HESC, to explore the hormonal regulation of nm23 and the roles of nm23 in in vitro decidualization, and as a possible mediator of downstream PI3K-Akt-mTOR signaling pathways. PARTICIPANTS/MATERIALS, SETTINGS AND METHODS: We evaluated the dynamic expression of nm23 in mice and humans using immunohistochemistry, western blot and real-time quantitative RT-PCR (RT-qPCR). Regulation of nm23 by steroid hormones was investigated in isolated primary mESCs and T-HESCs by western blot. The effect of nm23 knockdown (using siRNA) on ESC proliferation was analyzed by 5-ethynyl-2'-deoxyuridine staining (EdU) and proliferating cell nuclear antigen protein (PCNA) expression. The influence of nm23 expression on the differentiation of ESCs was determined by RT-qPCR using the mouse differentiation markers decidual/trophoblast PRL-related protein (dtprp, also named prl8a2) and prolactin family 3 subfamily c member 1 (prl3c1) and the human differentiation markers insulin-like growth factor binding protein 1 (IGFBP1) and prolactin (PRL). The effects of nm23 siRNA (si-nm23) and the PI3K inhibitor LY294002 on the downstream effects of nm23 on the PI3K-Akt-mTOR signaling pathway were estimated by western blot. MAIN RESULTS AND THE ROLE OF CHANCE: NM23-M1 was specifically expressed in the decidual zone during early pregnancy and in artificially induced deciduoma, and NM23-H1 was strongly expressed in human first trimester decidua. The expression of nm23 was upregulated by oestradiol and progesterone (P < 0.05 versus control) in vitro in mESCs and T-HESC, and this was inhibited by their respective receptor antagonists, ICI 182,780 and RU486. Mouse and human nm23 knockdown decreased ESC proliferation and differentiation (P < 0.05 versus control). The PI3K-Akt-mTOR signaling pathways were downstream mediators of nm23 in mESCs and T-HESCs decidualization. LIMITATIONS AND REASONS FOR CAUTION: Whether the nm23 regulates decidualization via the activation of AMPK, RAS, PKA, STAT3 or other signaling molecules remains to be determined. The role of nm23 in decidualization was tested in vitro only. WIDER IMPLICATIONS OF THE FINDINGS: Results demonstrate that nm23 plays a vital role in decidualization in mice and humans and that nm23 gene expression is hormonally regulated. The downregulation of nm23 in decidua during the first trimester may be associated with infertility in women. STUDY FUNDING/COMPETING INTERESTS: This study was supported by the National Natural Science Foundation of China (grant nos. 81370731, 31571551 and 31571190), the Science and Technology Project of Chongqing Education Committee (KJ130309), open funding by the Chongqing Institute for Family Planning (1201) and the Excellent Young Scholars of Chongqing Medical University (CQYQ201302). The authors have no conflicts of interest to declare.


Assuntos
Decídua/metabolismo , Regulação da Expressão Gênica , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Endométrio/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Nucleosídeo NM23 Difosfato Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Primeiro Trimestre da Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Estromais/metabolismo , Serina-Treonina Quinases TOR/metabolismo
6.
Nutrients ; 7(3): 1916-32, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25781218

RESUMO

It is well known that maternal folate deficiency results in adverse pregnancy outcomes. In addition to aspects in embryonic development, maternal uterine receptivity and the decidualization of stromal cells is also very important for a successful pregnancy. In this study, we focused on endometrium decidualization and investigated whether apoptosis, which is essential for decidualization, was impaired. Flow cytometry and TUNEL detection revealed that apoptosis of mouse endometrium decidual cells was suppressed in the dietary folate-deficient group on Days 7 and 8 of pregnancy (Day 1 = vaginal plug) when decidua regression is initiated. The endometrium decidual tissue of the folate deficiency group expressed less Bax compared to the normal diet group while they had nearly equal expression of Bcl2 protein. Further examination revealed that the mitochondrial transmembrane potential (ΔΨm) decreased, and the fluorescence of diffuse cytoplasmic cytochrome c protein was detected using laser confocal microscopy in normal decidual cells. However, no corresponding changes were observed in the folate-deficient group. Western blotting analyses confirmed that more cytochrome c was released from mitochondria in normal decidual cells. Taken together, these results demonstrated that folate deficiency could inhibit apoptosis of decidual cells via the mitochondrial apoptosis pathway, thereby restraining decidualization of the endometrium and further impairing pregnancy.


Assuntos
Apoptose , Decídua/fisiopatologia , Implantação do Embrião/fisiologia , Deficiência de Ácido Fólico/fisiopatologia , Ácido Fólico/sangue , Mitocôndrias/fisiologia , Complicações na Gravidez/sangue , Animais , Citocromos c/metabolismo , Endométrio , Feminino , Deficiência de Ácido Fólico/sangue , Potencial da Membrana Mitocondrial , Camundongos , Gravidez , Complicações na Gravidez/fisiopatologia , Prenhez , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células Estromais , Proteína X Associada a bcl-2/metabolismo
7.
Biol Res ; 42(4): 505-16, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20140306

RESUMO

Calreticulin (CRT), a Ca(2+)-binding storage protein and chaperone in the endoplasmic reticulum, modulates cell adhesiveness and integrin-dependent Ca(2+) signaling. However, the role of CRT during implantation remains poorly understood. In the present study, we characterized the expression of CRT mRNA and the protein in mouse endometria from pregnancy DI to D7. Real-Time PCR and in situ hybridization results showed that the levels of CRT mRNA in the endometria of pregnant mice were significantly higher than those of non-pregnant mice (P<0.05), and increased gradually from pregnancy DI to D4, reaching the máximum level on D4, followed by a plateau from D4 to D7. Using immunofluorescence histochemistry and western blot, changes of CRT expression in the endometria of pregnant mice were consistent with the expression of CRT mRNA. Furthermore, antisense CRT oligodeoxynucleotide was injected into the uterus horns of pregnant mice (D3) to investígate its effect on embryo implantation. The result showed that the number of implanted embryos markedly decreased in the side of uterine horns receiving antisense CRT oligodeoxynucleotide(í(>)<0.05). These findings suggest that CRT may play an important role in embryo implantation in mice.


Assuntos
Calreticulina/fisiologia , Implantação do Embrião/fisiologia , Endométrio/fisiologia , Animais , Western Blotting , Calreticulina/genética , Calreticulina/metabolismo , Endométrio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Reação em Cadeia da Polimerase , Gravidez , RNA Mensageiro/análise
8.
Biol. Res ; 42(4): 505-516, 2009. tab, graf, ilus
Artigo em Inglês | LILACS | ID: lil-537110

RESUMO

Calreticulin (CRT), a Ca2+-binding storage protein and chaperone in the endoplasmic reticulum, modulates cell adhesiveness and integrin-dependent Ca2+ signaling. However, the role of CRT during implantation remains poorly understood. In the present study, we characterized the expression of CRT mRNA and the protein in mouse endometria from pregnancy DI to D7. Real-Time PCR and in situ hybridization results showed that the levels of CRT mRNA in the endometria of pregnant mice were significantly higher than those of non-pregnant mice (P<0.05), and increased gradually from pregnancy DI to D4, reaching the máximum level on D4, followed by a plateau from D4 to D7. Using immunofluorescence histochemistry and western blot, changes of CRT expression in the endometria of pregnant mice were consistent with the expression of CRT mRNA. Furthermore, antisense CRT oligodeoxynucleotide was injected into the uterus horns of pregnant mice (D3) to investígate its effect on embryo implantation. The result showed that the number of implanted embryos markedly decreased in the side of uterine horns receiving antisense CRT oligodeoxynucleotide(í><0.05). These findings suggest that CRT may play an important role in embryo implantation in mice.


Assuntos
Animais , Feminino , Masculino , Camundongos , Gravidez , Calreticulina/fisiologia , Implantação do Embrião/fisiologia , Endométrio/fisiologia , Western Blotting , Calreticulina/genética , Calreticulina/metabolismo , Endométrio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Reação em Cadeia da Polimerase , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA