Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(28): 12467-12476, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38966939

RESUMO

The effect of Zn on Cd accumulation in rice varies under flooding and drainage conditions, and the underlying mechanism during uptake and transport from the soil to grains remains unclear. Isotope fractionation and gene expression were investigated using pot experiments under distinct water regimes and with Zn addition to gain a deeper understanding of the molecular effects of Zn on Cd uptake and transport in rice. The higher OsHMA2 expression but constitutively lower expression of zinc-regulated, iron-regulated transporter-like protein (ZIP) family genes in roots under the drainage regime than the flooding regime caused the enrichment of nonheavy Zn isotopes in the shoots relative to roots but minimally affected Cd isotopic fractionation. Drainage regime seem to exert a striking effect on the root-to-shoot translocation of Zn rather than Cd, and increased Zn transport via OsHMA2. The changes in expression patterns in response to Zn addition were similar to those observed upon switching from the flooding to drainage regime, except for OsNRAMP1 and OsNRAMP5. However, soil solution-to-rice plants and root-to-shoot fractionation toward light Zn isotopes with Zn addition (Δ66Znrice plant-soil solution = -0.49 to -0.40‰, Δ66Znshoot-root = -0.36 to -0.27‰) indicated that Zn transport occurred via nonspecific uptake pathways and OsHMA2, respectively. Accordingly, the less pronounced and minimally varied Cd isotope fractionation suggested that OsNRAMP5 and OsHMA2 are crucial for Cd uptake and root-to-shoot transport, respectively, facilitating Cd accumulation in grains. This study demonstrated that a high Zn supply promotes Cd uptake and root-to-shoot transport in rice by sharing distinct pathways, and by utilizing a non-Zn-sensitive pathway with a high affinity for Cd.


Assuntos
Cádmio , Oryza , Solo , Zinco , Oryza/metabolismo , Oryza/genética , Cádmio/metabolismo , Zinco/metabolismo , Solo/química , Raízes de Plantas/metabolismo , Transporte Biológico , Poluentes do Solo/metabolismo
2.
J Agric Food Chem ; 72(3): 1500-1508, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38165827

RESUMO

Iron (Fe) isotopes were utilized to provide insights into the temporal changes underlying Fe uptake and translocation during rice growth (tillering, jointing, flowering, and maturity stages) in soil-rice systems under typical flooding-drainage alternation. Fe isotopic composition (δ56Fe values) of the soil solution generally decreased at vegetative stages in flooding regimes but increased during grain-filling. Fe plaques were the prevalent source of Fe uptake, as indicated by the concurrent increase in the δ56Fe values of Fe plaques and rice plants during rice growth. The increasing fractionation magnitude from stem/nodes I to flag leaves can be attributed to the preferred phloem transport of light isotopes toward grains, particularly during grain-filling. This study demonstrates that rice plants take up heavy Fe isotopes from Fe plaque and soil solution via strategy II during flooding and the subsequent drainage period, respectively, thereby providing valuable insights into improving the nutritional quality during rice production.


Assuntos
Oryza , Poluentes do Solo , Isótopos de Ferro , Raízes de Plantas/química , Poluentes do Solo/análise , Solo , Cádmio/análise , Isótopos
3.
Environ Sci Technol ; 57(46): 17920-17929, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37755710

RESUMO

Anions accompanying inorganic fertilizers, such as chloride and sulfate ions, potentially affect the solubility, uptake, and transport of Cd to rice grains. However, the role of anions in controlling Cd transport in the soil-soil solution-Fe plaque-rice plant continuum remains poorly understood. Cd isotope ratios were applied to Cd-contaminated soil pots, hydroponic rice, and adsorption experiments with or without KCl and K2SO4 treatments to decipher transport processes in the complex soil-rice system. The chloride and sulfate ions increased the Cd concentrations in the soil solution, Fe plaque, and rice plants. Accordingly, the magnitude of positive fractionation from soil to the soil solution was less pronounced, but that between soil and Fe plaque or rice plant is barely varied. The similar isotope composition of Fe plaque and soil, and the similar fractionation magnitude between Fe plaque and the solution and between goethite and the solution, suggested that desorption-sorption between iron oxides and the solution could be important at the soil-soil solution-Fe plaque continuum. This study reveals the roles of chloride and sulfate ions: (i) induce the mobility of light Cd isotopes from soil to the soil solution, (ii) chloro-Cd and sulfato-Cd complexes contribute to Cd immobilization in the Fe plaque and uptake into roots, and (iii) facilitate second leaves/node II-to-grain Cd transport within shoots. These results provide insights into the anion-induced Cd isotope effect in the soil-rice system and the roles of anions in facilitating Cd migration and transformation.


Assuntos
Oryza , Poluentes do Solo , Ferro , Cádmio , Cloretos/farmacologia , Solo , Sulfatos , Isótopos/farmacologia , Raízes de Plantas/química
4.
J Agric Food Chem ; 70(8): 2564-2573, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175773

RESUMO

Rice can simultaneously absorb Fe2+ via a strategy I-like system and Fe(III)-phytosiderophore via strategy II from soil. Still, it remains unclear which strategy and source of Fe dominate under distinct water conditions. An isotope signature combined with gene expression was employed to evaluate Fe uptake and transport in a soil-rice system under flooded and drained conditions. Rice of flooded treatment revealed a similar δ56Fe value to that of soils (Δ56Ferice-soil = 0.05‰), while that of drained treatment was lighter than that of the soils (Δ56Ferice-soil = -0.41‰). Calculations indicated that 70.4% of Fe in rice was from Fe plaque under flooded conditions, while Fe was predominantly from soil solution under drained conditions. Up-regulated expression of OsNAAT1, OsTOM2, and OsYSL15 was observed in the root of flooded treatment, while higher expression of OsIRT1 was observed in the drained treatment. These isotopic and genetic results suggested that the Fe(III)-DMA uptake from Fe plaque and Fe2+ uptake from soil solution dominated under flooded and drained conditions, respectively.


Assuntos
Oryza , Poluentes do Solo , Expressão Gênica , Ferro/metabolismo , Isótopos/metabolismo , Oryza/genética , Oryza/metabolismo , Solo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA