Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Mol Cell Cardiol ; 194: 3-15, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844061

RESUMO

Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.

2.
Proc Natl Acad Sci U S A ; 121(13): e2319429121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513095

RESUMO

Polyamines are a class of small polycationic alkylamines that play essential roles in both normal and cancer cell growth. Polyamine metabolism is frequently dysregulated and considered a therapeutic target in cancer. However, targeting polyamine metabolism as monotherapy often exhibits limited efficacy, and the underlying mechanisms are incompletely understood. Here we report that activation of polyamine catabolism promotes glutamine metabolism, leading to a targetable vulnerability in lung cancer. Genetic and pharmacological activation of spermidine/spermine N1-acetyltransferase 1 (SAT1), the rate-limiting enzyme of polyamine catabolism, enhances the conversion of glutamine to glutamate and subsequent glutathione (GSH) synthesis. This metabolic rewiring ameliorates oxidative stress to support lung cancer cell proliferation and survival. Simultaneous glutamine limitation and SAT1 activation result in ROS accumulation, growth inhibition, and cell death. Importantly, pharmacological inhibition of either one of glutamine transport, glutaminase, or GSH biosynthesis in combination with activation of polyamine catabolism synergistically suppresses lung cancer cell growth and xenograft tumor formation. Together, this study unveils a previously unappreciated functional interconnection between polyamine catabolism and glutamine metabolism and establishes cotargeting strategies as potential therapeutics in lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Glutamina , Poliaminas/metabolismo , Pulmão/metabolismo , Morte Celular , Acetiltransferases/genética , Acetiltransferases/metabolismo , Espermina/metabolismo
3.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 184-198, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38282476

RESUMO

Cellular senescence is an important factor leading to pulmonary fibrosis. Deficiency of 8-oxoguanine DNA glycosylase (OGG1) in mice leads to alleviation of bleomycin (BLM)-induced mouse pulmonary fibrosis, and inhibition of the OGG1 enzyme reduces the epithelial mesenchymal transition (EMT) in lung cells. In the present study, we find decreased expression of OGG1 in aged mice and BLM-induced cell senescence. In addition, a decrease in OGG1 expression results in cell senescence, such as increases in the percentage of SA-ß-gal-positive cells, and in the p21 and p-H2AX protein levels in response to BLM in lung cells. Furthermore, OGG1 promotes cell transformation in A549 cells in the presence of BLM. We also find that OGG1 siRNA impedes cell cycle progression and inhibits the levels of telomerase reverse transcriptase (TERT) and LaminB1 in BLM-treated lung cells. The increase in OGG1 expression results in the opposite phenomenon. The mRNA levels of senescence-associated secretory phenotype (SASP) components, including IL-1α, IL-1ß, IL-6, IL-8, CXCL1/CXCL2, and MMP-3, in the absence of OGG1 are obviously increased in A549 cells treated with BLM. Interestingly, we demonstrate that OGG1 binds to p53 to inhibit the activation of p53 and that silencing of p53 reverses the inhibition of OGG1 on senescence in lung cells. Additionally, the augmented cell senescence is shown in vivo in OGG1-deficient mice. Overall, we provide direct evidence in vivo and in vitro that OGG1 plays an important role in protecting tissue cells against aging associated with the p53 pathway.


Assuntos
DNA Glicosilases , Guanina/análogos & derivados , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Pulmão/metabolismo , Senescência Celular , DNA Glicosilases/genética , DNA Glicosilases/metabolismo
4.
J Cell Mol Med ; 28(1): e18009, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882107

RESUMO

The complex interplay between tumour cells and the tumour microenvironment (TME) underscores the necessity for gaining comprehensive insights into disease progression. This study centres on elucidating the elusive the elusive role of endothelial cells within the TME of head and neck squamous cell carcinoma (HNSCC). Despite their crucial involvement in angiogenesis and vascular function, the mechanistic diversity of endothelial cells among HNSCC patients remains largely uncharted. Leveraging advanced single-cell RNA sequencing (scRNA-Seq) technology and the Scissor algorithm, we aimed to bridge this knowledge gap and illuminate the intricate interplay between endothelial cells and patient prognosis within the context of HNSCC. Here, endothelial cells were categorized into Scissorhigh and Scissorlow subtypes. We identified Scissor+ endothelial cells exhibiting pro-tumorigenic profiles and constructed a prognostic risk model for HNSCC. Additionally, four biomarkers also were identified by analysing the gene expression profiles of patients with HNSCC and a prognostic risk prediction model was constructed based on these genes. Furthermore, the correlations between endothelial cells and prognosis of patients with HNSCC were analysed by integrating bulk and single-cell sequencing data, revealing a close association between SHSS and the overall survival (OS) of HNSCC patients with malignant endothelial cells. Finally, we validated the prognostic model by RT-qPCR and IHC analysis. These findings enhance our comprehension of TME heterogeneity at the single-cell level and provide a prognostic model for HNSCC.


Assuntos
Células Endoteliais , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Algoritmos , Carcinogênese , Microambiente Tumoral
5.
Hepatol Commun ; 7(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055645

RESUMO

BACKGROUND: Liver cancer is increasing due to the rise in metabolic dysfunction-associated steatohepatitis (MASH). High-mobility group box-1 (HMGB1) is involved in the pathogenesis of chronic liver disease, but its role in MASH-associated liver cancer is unknown. We hypothesized that an increase in hepatocyte-derived HMGB1 in a mouse model of inactivation of PTEN that causes MASH could promote MASH-induced tumorigenesis. METHODS: We analyzed publicly available transcriptomics datasets, and to explore the effect of overexpressing HMGB1 in cancer progression, we injected 1.5-month-old Pten∆Hep mice with adeno-associated virus serotype-8 (AAV8) vectors to overexpress HMGB1-EGFP or EGFP, and sacrificed them at 3, 9 and 11 months of age. RESULTS: We found that HMGB1 mRNA increases in human MASH and MASH-induced hepatocellular carcinoma (MASH-HCC) compared to healthy livers. Male and female Pten∆Hep mice overexpressing HMGB1 showed accelerated liver tumor development at 9 and 11 months, respectively, with increased tumor size and volume, compared to control Pten∆Hep mice. Moreover, Pten∆Hep mice overexpressing HMGB1, had increased incidence of mixed HCC-intrahepatic cholangiocarcinoma (iCCA). All iCCAs were positive for nuclear YAP and SOX9. Male Pten∆Hep mice overexpressing HMGB1 showed increased cell proliferation and F4/80+ cells at 3 and 9 months. CONCLUSION: Overexpression of HMGB1 in hepatocytes accelerates liver tumorigenesis in Pten∆Hep mice, enhancing cell proliferation and F4/80+ cells to drive MASH-induced liver cancer.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Fígado Gorduroso , Proteína HMGB1 , Neoplasias Hepáticas , Animais , Feminino , Humanos , Lactente , Masculino , Camundongos , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Proteína HMGB1/genética , Neoplasias Hepáticas/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
6.
J Clin Invest ; 132(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36256480

RESUMO

Glutamine synthetase (GS) catalyzes de novo synthesis of glutamine that facilitates cancer cell growth. In the liver, GS functions next to the urea cycle to remove ammonia waste. As a dysregulated urea cycle is implicated in cancer development, the impact of GS's ammonia clearance function has not been explored in cancer. Here, we show that oncogenic activation of ß-catenin (encoded by CTNNB1) led to a decreased urea cycle and elevated ammonia waste burden. While ß-catenin induced the expression of GS, which is thought to be cancer promoting, surprisingly, genetic ablation of hepatic GS accelerated the onset of liver tumors in several mouse models that involved ß-catenin activation. Mechanistically, GS ablation exacerbated hyperammonemia and facilitated the production of glutamate-derived nonessential amino acids, which subsequently stimulated mechanistic target of rapamycin complex 1 (mTORC1). Pharmacological and genetic inhibition of mTORC1 and glutamic transaminases suppressed tumorigenesis facilitated by GS ablation. While patients with hepatocellular carcinoma, especially those with CTNNB1 mutations, have an overall defective urea cycle and increased expression of GS, there exists a subset of patients with low GS expression that is associated with mTORC1 hyperactivation. Therefore, GS-mediated ammonia clearance serves as a tumor-suppressing mechanism in livers that harbor ß-catenin activation mutations and a compromised urea cycle.


Assuntos
Glutamato-Amônia Ligase , Neoplasias Hepáticas , Animais , Camundongos , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Amônia/metabolismo , Nitrogênio/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Glutamina/metabolismo , Homeostase , Ureia/metabolismo
7.
Chem Biol Interact ; 362: 109999, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654123

RESUMO

Pulmonary fibrosis is a highly aggressive and lethal disease that currently lacks effective targeting therapies. Herein, we established a mouse model of pulmonary fibrosis induced by intratracheal instillation of bleomycin (BLM) in wild-type (WT) and 8-oxoguanine DNA glycosylase-1 (OGG1) knockout (Ogg1-/-) mice. TH5487, a specific small-molecule inhibitor of OGG1, was found to ameliorate BLM-induced pulmonary fibrosis in WT mice. Concomitantly, TH5487 treatment markedly suppressed the BLM-mediated alveolar epithelial-mesenchymal transition (EMT) and increase in OGG1 protein level in the lungs of WT mice. However, administration of TH5487 did not further improve this fibrotic transformation in Ogg1-/- mice. More importantly, adeno-associated virus-mediated lung-specific OGG1 overexpression accelerated alveolar EMT and the resultant fibrosis progression antagonized by TH5487 in the fibrotic lungs of WT mice, suggesting that the down-regulation of OGG1 protein level could be essential for TH5487 to exert its anti-fibrogenic function. Mechanism study in alveolar epithelial cells demonstrated that TH5487 treatment canceled TGF-ß1-mediated suppression of NEDD4-like E3 ubiquitin ligase (NEDD4L), which ubiquitinated OGG1 and targeted it for proteasomal degradation. Furthermore, TH5487-mediated suppression of alveolar EMT and the fibrotic processes was counteracted by silencing NEDD4L in TGF-ß1-induced alveolar epithelial cells. Collectively, these data underline the potential of TH5487 as an effective anti-fibrotic agent for pulmonary fibrosis.


Assuntos
Benzimidazóis , DNA Glicosilases , Piperidinas , Fibrose Pulmonar , Animais , Benzimidazóis/farmacologia , Bleomicina/farmacologia , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Piperidinas/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
8.
Cell Cycle ; 21(10): 1077-1090, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35316162

RESUMO

Arecoline, the most abundant alkaloid of the areca nut, induces toxicity to neurons. Hydrogen sulfide (H2S) is an endogenous gas with neuroprotective effects. We recently found that arecoline reduced endogenous H2S content in PC12 cells. In addition, exogenously administration of H2S alleviated the neurotoxicity of arecoline on PC12 cells. Increasing evidence has demonstrated the neuroprotective role of improvement of autophagic flux. Therefore, the aim of the present work is to explore whether improvement of autophagic flux mediates the protection of H2S against arecoline-caused neurotoxicity. Transmission electron microscope (TEM) for observation of ultrastructural morphology. Western blotting was used to detect protein expression of the related markers. Functional analysis contained LDH release assay, Hoechst 33,258 nuclear staining and flow cytometry were used to detect cytotoxicity and apoptosis. In the present work, we found that arecoline disrupted autophagy flux in PC12 cells as evidenced by accumulation of autophagic vacuoles, increase in LC3II/LC3I, and upregulation of p62 expression in PC12 cells. Notably, we found that sodium hydrosulfide (NaHS), the donor of H2S improved arecoline-blocked autophagy flux in PC12 cells. Furthermore, we found that blocking autophagic flux by chloroquine (CQ), the inhibitor of autophagy flux, antagonized the inhibitory role of NaHS in arecoline-induced cytotoxicity apoptosis and endoplasmic reticulum (ER) stress. In conclusion, H2S improves arecoline-caused disruption of autophagic flux to exert its protection against the neurotoxicity of arecoline.


Assuntos
Sulfeto de Hidrogênio , Animais , Apoptose , Arecolina/toxicidade , Autofagia , Estresse do Retículo Endoplasmático , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Células PC12 , Ratos
9.
Hepatol Commun ; 6(8): 2155-2169, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35344292

RESUMO

Silencing the Hippo kinases mammalian sterile 20-like 1 and 2 (MST1/2) activates the transcriptional coactivator yes-associated protein (YAP) in human hepatocellular carcinoma (HCC). Hepatocyte-derived high-mobility group box-1 (HMGB1) regulates YAP expression; however, its contribution to HCC in the context of deregulated Hippo signaling is unknown. Here, we hypothesized that HMGB1 is required for hepatocarcinogenesis by activating YAP in Hippo signaling-deficient (Mst1/2ΔHep ) mice. Mst1/2ΔHep mice developed HCC within 3.5 months of age and had increased hepatic expression of HMGB1 and elevated YAP activity compared to controls. To understand the contribution of HMGB1, we generated Mst1/2&Hmgb1ΔHep mice. They exhibited decreased YAP activity, cell proliferation, inflammation, fibrosis, atypical ductal cell expansion, and HCC burden at 3.5 months compared to Mst1/2∆Hep mice. However, Mst1/2&Hmgb1ΔHep mice were smaller, developed hyperbilirubinemia, had more liver injury with intrahepatic biliary defects, and had reduced hemoglobin compared to Mst1/2ΔHep mice. Conclusion: Hepatic HMGB1 promotes hepatocarcinogenesis by regulation of YAP activity; nevertheless, it maintains intrahepatic bile duct physiology under Hippo signaling deficiency.


Assuntos
Carcinoma Hepatocelular , Proteína HMGB1 , Via de Sinalização Hippo , Hiperbilirrubinemia , Neoplasias Hepáticas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Proteína HMGB1/genética , Humanos , Hiperbilirrubinemia/genética , Neoplasias Hepáticas/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
10.
EBioMedicine ; 69: 103456, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34233258

RESUMO

BACKGROUND: Doxorubicin, an anthracycline chemotherapeutic agent, is widely used in the treatment of many cancers. However, doxorubicin posts a great risk of adverse cardiovascular events, which are thought to be caused by oxidative stress. We recently reported that the ubiquitin E3 ligase TRIM21 interacts and ubiquitylates p62 and negatively regulates the p62-Keap1-Nrf2 antioxidant pathway. Therefore, we sought to determine the role TRIM21 in cardiotoxicity induced by oxidative damage. METHODS: Using TRIM21 knockout mice, we examined the effects of TRIM21 on cardiotoxicity induced by two oxidative damage models: the doxorubicin treatment model and the Left Anterior Descending (LAD) model. We also explored the underlying mechanism by RNA-sequencing of the heart tissues, and by treating the mouse embryonic fibroblasts (MEFs), immortalized rat cardiomyocyte line H9c2, and immortalized human cardiomyocyte line AC16 with doxorubicin. FINDINGS: TRIM21 knockout mice are protected from heart failure and fatality in both the doxorubicin and LAD models. Hearts of doxorubicin-treated wild-type mice exhibit deformed mitochondria and elevated level of lipid peroxidation reminiscent of ferroptosis, which is alleviated in TRIM21 knockout hearts. Mechanistically, TRIM21-deficient heart tissues and cultured MEFs and H9c2 cells display enhanced p62 sequestration of Keap1 and are protected from doxorubicin-induced ferroptosis. Reconstitution of wild-type but not the E3 ligase-dead and the p62 binding-deficient TRIM21 mutants impedes the protection from doxorubicin-induced cell death. INTERPRETATION: Our study demonstrates that TRIM21 ablation protects doxorubicin-induced cardiotoxicity and illustrates a new function of TRIM21 in ferroptosis, and suggests TRIM21 as a therapeutic target for reducing chemotherapy-related cardiotoxicity. FUNDING: NIH (CA129536; DK108989): data collection, analysis. Shanghai Pujiang Program (19PJ1401900): data collection. National Natural Science Foundation (31971161): data collection. Department of Veteran Affairs (BX004083): data collection. Tianjin Science and Technology Plan Project (17ZXMFSY00020): data collection.


Assuntos
Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Ferroptose , Cardiopatias/genética , Miócitos Cardíacos/efeitos dos fármacos , Ribonucleoproteínas/genética , Animais , Cardiotoxicidade/genética , Linhagem Celular , Células Cultivadas , Cardiopatias/etiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Ratos
11.
Cell Mol Gastroenterol Hepatol ; 11(5): 1369-1385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33482392

RESUMO

BACKGROUND AND AIMS: TRIM21 is a ubiquitin E3 ligase that is implicated in numerous biological processes including immune response, cell metabolism, redox homeostasis, and cancer development. We recently reported that TRIM21 can negatively regulate the p62-Keap1-Nrf2 antioxidant pathway by ubiquitylating p62 and prevents its oligomerization and protein sequestration function. As redox homeostasis plays a pivotal role in many cancers including liver cancer, we sought to determine the role of TRIM21 in hepatocarcinogenesis. METHODS: We examined the correlation between TRIM21 expression and the disease using publicly available data sets and 49 cases of HCC clinical samples. We used TRIM21 genetic knockout mice to determine how TRIM21 ablation impact HCC induced by the carcinogen DEN plus phenobarbital (PB). We explored the mechanism that loss of TRIM21 protects cells from DEN-induced oxidative damage and cell death. RESULTS: There is a positive correlation between TRIM21 expression and HCC. Consistently, TRIM21-knockout mice are resistant to DEN-induced hepatocarcinogenesis. This is accompanied by decreased cell death and tissue damage upon DEN treatment, hence reduced hepatic tissue repair response and compensatory proliferation. Cells deficient in TRIM21 display enhanced p62 sequestration of Keap1 and are protected from DEN-induced ROS induction and cell death. Reconstitution of wild-type but not the E3 ligase-dead and the p62 binding-deficient mutant TRIM21 impedes the protection from DEN-induced oxidative damage and cell death in TRIM21-deficient cells. CONCLUSIONS: Increased TRIM21 expression is associated with human HCC. Genetic ablation of TRIM21 leads to protection against oxidative hepatic damage and decreased hepatocarcinogenesis, suggesting TRIM21 as a preventive and therapeutic target.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Ribonucleoproteínas/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Prognóstico , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
12.
Sci Rep ; 9(1): 15525, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664153

RESUMO

Male infertility might be caused by genetic and/or environmental factors that impair spermatogenesis and epididymal sperm maturation. Here we report that heterozygous deletion of the nuclear receptor coactivator-5 (Ncoa5) gene resulted in decreased motility and progression of spermatozoa in the cauda epididymis, leading to infertility in male mice. Light microscopic and ultrastructural analysis revealed morphological defects in the spermatozoa collected from the cauda epididymis of Ncoa5+/- mice. Immunohistochemistry showed that interleukin-6 (IL-6) expression in epithelial cells of Ncoa5+/- epididymis was higher than wild type counterparts. Furthermore, heterozygous deletion of Il-6 gene in Ncoa5+/- male mice partially improved spermatozoa motility and moderately rescued infertility phenotype. Our results uncover a previously unknown physiological role of NCOA5 in the regulation of epididymal sperm maturation and suggest that NCOA5 deficiency could cause male infertility through increased IL-6 expression in epididymis.


Assuntos
Regulação da Expressão Gênica , Infertilidade Masculina , Interleucina-6/biossíntese , Coativadores de Receptor Nuclear/deficiência , Motilidade dos Espermatozoides/genética , Espermatozoides , Animais , Epididimo/metabolismo , Epididimo/patologia , Haploinsuficiência , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Interleucina-6/genética , Masculino , Camundongos , Camundongos Knockout , Coativadores de Receptor Nuclear/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patologia
13.
J Cell Mol Med ; 23(5): 3583-3596, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30869194

RESUMO

Tetraspanin 1(TSPAN1) as a clinically relevant gene target in cancer has been studied, but there is no direct in vivo or vitro evidence for pulmonary fibrosis (PF). Using reanalysing Gene Expression Omnibus data, here, we show for the first time that TSPAN1 was markedly down-regulated in lung tissue of patient with idiopathic PF (IPF) and verified the reduced protein expression of TSPAN1 in lung tissue samples of patient with IPF and bleomycin-induced PF mice. The expression of TSPAN1 was decreased and associated with transforming growth factor-ß1 (TGF-ß1 )-induced molecular characteristics of epithelial-to-mesenchymal transition (EMT) in alveolar epithelial cells (AECs). Silencing TSPAN1 promoted cell migration, and the expression of alpha-smooth muscle actin, vimentin and E-cadherin in AECs with TGF-ß1 treatment, while exogenous TSPAN1 has the converse effects. Moreover, silencing TSPAN1 promotes the phosphorylation of Smad2/3 and stabilizes beta-catenin protein, however, overexpressed TSPAN1 impeded TGF-ß1 -induced activation of Smad2/3 and beta-catenin pathway in AECs. Together, our study implicates TSPAN1 as a key regulator in the process of EMT in AECs of IPF.


Assuntos
Transição Epitelial-Mesenquimal/genética , Fibrose Pulmonar Idiopática/genética , Proteína Smad2/genética , Proteína Smad3/genética , Tetraspaninas/genética , beta Catenina/genética , Células A549 , Idoso , Células Epiteliais Alveolares/metabolismo , Animais , Bleomicina , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Tetraspaninas/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , beta Catenina/metabolismo
14.
Technol Cancer Res Treat ; 18: 1533033818823029, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30803359

RESUMO

Long noncoding RNAs are capable of regulating gene expression at multiple levels. These RNA molecules are also involved in a variety of physiological and pathological processes. Emerging data demonstrate that a series of differentially expressed long noncoding RNAs are implicated in tumorigenesis. In the present study, we used microarray analysis to identify long noncoding RNAs that are dysregulated in non-small-cell lung cancer when compared to normal lung tissues. Accordingly, we performed quantitative real-time polymerase chain reaction to analyze the levels of long noncoding RNA and the cis target gene. We further found the oncogene property of long noncoding RNA that long noncoding RNA downexpression inhibits non-small-cell lung cancer cells proliferation and migration based on 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and colony formation assays and wound healing as well as transwell assays. The influence of long noncoding RNA on cell cycle of non-small-cell lung cancer cells is also analyzed by flow cytometry. Among the dysregulated long noncoding RNAs, we identified INS-IGF2 readthrough, transcript variant 1, noncoding RNA (NR_003512.3) is upregulated in non-small-cell lung cancer tissues, the cis gene of which is insulin-like growth factor 2 gene hinted by bioinformatics analysis. We also observed that downregulation of INS-IGF2 readthrough, transcript variant 1, noncoding RNA reduces insulin-like growth factor 2 messenger RNA expression. Furthermore, INS-IGF2 readthrough, transcript variant 1, noncoding RNA downregulation suppresses non-small-cell lung cancer cell proliferation and migration. This downregulation results in a concomitant inhibition of the G1/S transition in non-small-cell lung cancer cells. Our findings suggest that INS-IGF2 readthrough, transcript variant 1, noncoding RNA may be an oncogene involved in the development of lung cancer. Therefore, we speculate that INS-IGF2 readthrough, transcript variant 1, noncoding RNA represents a potential therapeutic target for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Proliferação de Células , Fase G1 , Proteínas Mutantes Quiméricas/genética , RNA Longo não Codificante/genética , Fase S , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Estudos de Casos e Controles , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Prognóstico , Células Tumorais Cultivadas
15.
Inflamm Res ; 67(11-12): 951-964, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30291375

RESUMO

OBJECTIVE: Tetraspanin family plays an important role in the pathogenesis of cancer, but its role in lung fibrosis is unknown. To determine whether tetraspanin 1 (TSPAN1), a member of the family, may be involved in the pathogenesis of pulmonary fibrosis. METHODS: TNFα -stimulated human alveolar epithelial (A549) and alveolar epithelial type II cell (AT2) were treated in vitro. Murine pulmonary fibrosis model was generated by injection of bleomycin (BLM). The expression of TSPAN1 was examined in vivo using the bleomycin-induced lung fibrosis model and tissue sample of IPF patients. Then we transfected the cells with TSPAN1 siRNA or plasmid and detected the expression changes of related proteins and cell apoptosis. RESULTS: In our study, we found that TSPAN1 was markedly down-regulated in lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and in bleomycin-induced pulmonary fibrosis in mice. We also found that TSPAN1 was significantly down-regulated in A549 and primary (AT2) cells following exposure to TNFα. Meanwhile, TSPAN1 inhibited p-IκBα, which attenuated nuclear NF-κB translocation and activation and inhibited apoptosis. We demonstrated that TSPAN1 reduced Bax translocation and caspase-3 activation, inhibited the apoptosis by regulating the NF-κB pathway in response to TNFα. CONCLUSIONS: We conclude that TSPAN1 mediated apoptosis resistance of alveolar epithelial cells by regulating the NF-κB pathway. TSPAN1 may be a potential therapeutic target for pulmonary fibrosis or acute lung injury.


Assuntos
Células Epiteliais Alveolares/metabolismo , NF-kappa B/metabolismo , Fibrose Pulmonar/metabolismo , Tetraspaninas/metabolismo , Animais , Apoptose , Bleomicina , Células Cultivadas , Feminino , Humanos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , RNA Interferente Pequeno/genética , Transdução de Sinais , Tetraspaninas/genética , Fator de Necrose Tumoral alfa/farmacologia
16.
Mol Carcinog ; 57(3): 419-428, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29144562

RESUMO

Cisplatin-based chemotherapy is the most commonly used treatment regimen for lung cancer. Cancer stem cells (CSCs) are postulated to be important promoters of drug resistance. We previously found that miR-5100 is overexpressed in lung cancer, but it is unknown whether and how miR-5100 regulates cisplatin resistance. Here, we demonstrated that miR-5100 was significantly up-regulated in CD44+ CD133+ lung cancer stem cells (LCSCs) compared with non-CSCs. Additionally, over-expression of miR-5100 increased CSC properties, cell growth, and tumor sphere formation in lung cancer cell line A549 or H1299, and that miR-5100 inhibitor significantly increased sensitivity of LCSCs to cisplatin in vitro. Surprisingly, the combination with miR-5100 inhibitor significantly decreased the IC50 of LCSCs to cisplatin. Furthermore, miR-5100 increased CSC properties and cisplatin resistance by inhibiting Rab6, a direct target gene of miR-5100. We demonstrated that miR-5100 overexpression increases the cisplatin resistance of the LCSCs through the mitochondrial apoptosis pathway. In conclusion, our results suggest that miR-5100 increases the cisplatin resistance of the LCSCs by inhibiting the Rab6. This study provides novel insight into the regulation of LCSCs by miRNA.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/genética , Células A549 , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
17.
DNA Cell Biol ; 36(12): 1071-1080, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29227732

RESUMO

8-Oxoguanine DNA glycosylase (OGG1) is responsible for repairing 8-oxo-7,8-dihydroguanine (8-oxoG). Our previous study demonstrated that α-OGG1 protects cells from oxidative damage-induced apoptosis and mitochondrial dysfunction in human lung cancer cells. However, the function of ß-OGG1 remains to be elucidated. In this study, we demonstrated that overexpressed ß-OGG1 has the same role as α-OGG1 in protecting human bronchial epithelial cells from apoptosis and mitochondrial dysfunction. Furthermore, flow cytometry, confocal microscopy, and western blotting showed that the overexpression of ß-OGG1 could block oxidant-induced apoptosis in human bronchial epithelial cells. Additionally, knocking down OGG1 enhanced oxidative damage-induced apoptosis and mitochondrial dysfunction, whereas the overexpression of ß-OGG1 had the opposite effects and led to the downregulation of Bax and PARP. The antiapoptotic function of ß-OGG1 involved the JNK signaling pathway. These findings suggest that ß-OGG1 and α-OGG1 have a similar function on preventing oxidative damage-mediated apoptosis and mitochondrial dysfunction; these effects might be important in the molecular events underlying oxidant-induced cytotoxicity.


Assuntos
Brônquios/metabolismo , DNA Glicosilases/metabolismo , Sistema de Sinalização das MAP Quinases , Apoptose , Brônquios/citologia , Linhagem Celular , Sobrevivência Celular , Dano ao DNA , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/genética , Reparo do DNA , Regulação para Baixo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Regulação para Cima
18.
Am J Transl Res ; 9(10): 4694-4706, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118928

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating disease and the pathogenesis of IPF remains unclear. Our previous study indicated that miR-5100 promotes the proliferation and metastasis of lung epithelial cells. In this study, we investigated the effect and mechanism of miR-5100 on bleomycin (BLM)-induced mouse lung fibrosis and transforming growth factor ß (TGF-ß1) or epidermal growth factor (EGF) induced EMT-model in A549 and Beas-2B cells. The elevated level of miR-5100 was observed in both the mouse lung fibrosis tissues and EMT cell model. Furthermore, the exogenous expression of miR-5100 promoted the EMT-related changes, enhanced TGF-ß1 or EGF-induced EMT and activated the smad2/3 in lung epithelial cells, while silencing miR-5100 had the converse effects. In addition, transwell assay showed that miR-5100 can enhance cell migration. Using target prediction software and luciferase reporter assays, we identified TOB2 as a specific target of miR-5100 and miR-5100 can decrease the accumulation of endogenous TOB2 in A549 and Beas-2B cells. Moreover, the exogenous expression of TOB2 relieves the promotion of miR-5100 on EMT process and migration ability. Taken together, our results indicate that miR-5100 promotes the EMT process by targeting TOB2 associated with activating smad2/3 in lung epithlium cells. Our findings may provide novel insights into the pathogenesis of IPF.

19.
Cell Cycle ; 16(23): 2249-2258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28933981

RESUMO

Accumulating evidence demonstrates that a series of differentially expressed lncRNAs is important in tumorigenesis. However, the function of many of the lncRNAs in lung cancer remains elusive. In the present study, we used microarray analysis to identify lncRNAs that are dysregulated in non-small-cell lung cancer (NSCLC) as compared with normal tissues. Among the dysregulated lncRNAs, we identified TFPI2AS1, an antisense transcript of the tumor suppressor TFPI2 (tissue factor pathway inhibitor 2). TFPI2AS1 was shown to be markedly upregulated in NSCLC patient tumors as compared to paired non-tumor samples. TFPI2AS1 knockdown increased NSCLC cell proliferation and migration, which was associated with enhanced G1/S transition and downregulation of cyclin D1 and cyclin-dependent kinases 2 (CDK2), while TFPI2AS1 overexpression had the opposite effect. Knockdown and overexpression experiments also suggested that TFPI2AS1 regulates NSCLC cell migration and AKT activation. Moreover, TFPI2AS1 is a positive regulator of TFPI2. Our findings bring new insights for understanding the role of TFPI2AS1 in mediating the proliferation and migration of NSCLC cells by regulating TFPI2 expression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Ciclina D1/metabolismo , Regulação para Baixo , Pontos de Checagem da Fase G1 do Ciclo Celular , Glicoproteínas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
20.
Cancer Lett ; 391: 152-161, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28137631

RESUMO

Type 2 Diabetes (T2D) is a risk factor for hepatocellular carcinoma (HCC). We have previously described that haploinsufficiency of nuclear receptor coactivator 5 (NCOA5) is a genetic defect linking glucose intolerance to HCC. Here we report identification and characterization of a single nucleotide variation (T445A) in NCOA5, causing an amino acid Thr to Ala substitution, in adjacent non-tumorous liver tissues derived from patients with concurrent HCC and T2D. By using Tet-On inducible expression cells, we show that ectopic expression of NCOA5wt suppressed proliferation of HCC cells via induction of G2/M arrest, while ectopic expression of NCOA5T445A had a significantly lesser effect compared to ectopic expression of NCOA5wt. Furthermore, ectopic expression of NCOA5wt increased the occurrence of DNA damage and cell senescence, whereas expression of NCOA5T445A partly lost this activity. Xenograft tumor model analysis demonstrated that ectopic NCOA5wt expression reduced HCC tumor growth and the T445A variation impairs its tumor growth inhibitory function. Collectively, our data show that the T445A variation impairs the ability of NCOA5 to inhibit growth of HCC, suggesting that this variation may have potential to increase susceptibility to HCC comorbid with T2D.


Assuntos
Carcinoma Hepatocelular/genética , Diabetes Mellitus Tipo 2/complicações , Neoplasias Hepáticas/genética , Coativadores de Receptor Nuclear/genética , Animais , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Coativadores de Receptor Nuclear/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA