Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 8(11): 2050-2066, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845316

RESUMO

Microbial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Ferro/metabolismo , Ecossistema , Biomassa , Oceanos e Mares , Proteínas/metabolismo , Bombas de Próton/metabolismo
2.
Front Immunol ; 13: 1008702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330522

RESUMO

Sepsis-induced myocardiopathy, characterized by innate immune cells infiltration and proinflammatory cytokines release, may lead to perfusion failure or even life-threatening cardiogenic shock. Macrophages-mediated inflammation has been shown to contribute to sepsis-induced myocardiopathy. In the current study, we introduced two photoactivated adenylyl cyclases (PACs), Beggiatoa sp. PAC (bPAC) and Beggiatoa sp. IS2 PAC (biPAC) into macrophages by transfection to detect the effects of light-induced regulation of macrophage pro-inflammatory response and LPS-induced sepsis-induced myocardiopathy. By this method, we uncovered that blue light-induced bPAC or biPAC activation considerably inhibited the production of pro-inflammatory cytokines IL-1 and TNF-α, both at mRNA and protein levels. Further, we assembled a GelMA-Macrophages-LED system, which consists of GelMA-a type of light crosslink hydrogel, gene modulated macrophages and wireless LED device, to allow light to regulate cardiac inflammation in situ with murine models of LPS-induced sepsis. Our results showed significant inhibition of leukocytes infiltration, especially macrophages and neutrophils, suppression of pro-inflammatory cytokines release, and alleviation of sepsis-induced cardiac dysfunction. Thus, our study may represent an emerging means to treat sepsis-induced myocardiopathy and other cardiovascular diseases by photo-activated regulating macrophage function.


Assuntos
Beggiatoa , Cardiomiopatias , Sepse , Camundongos , Animais , Adenilil Ciclases/metabolismo , Lipopolissacarídeos , Beggiatoa/genética , Beggiatoa/metabolismo , Sepse/complicações , Sepse/metabolismo , Macrófagos , Citocinas/metabolismo , Cardiomiopatias/etiologia
3.
Arch Microbiol ; 204(1): 80, 2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-34954806

RESUMO

Strain W712T was isolated from rhizosphere soil of Nicotiana tabacum L. collected from Kunming, south-west China. Cells were Gram-staining negative, aerobic, motile and rod shaped. The isolate grew at 20-45 °C (optimum 30 °C), pH 6.0-8.0 (optimum pH 7.0) and in the presence of up to 3.0% (w/v) NaCl (optimum 1%, w/v). Ubiquinone-10 was the only respiratory quinone type. Polar lipids contained diphosphatidylglycerol, phosphatidylmehtylethanolamine, phosphatidylglycerol, phosphatidylcholine and an unidentified aminolipid. The major fatty acids were detected as summed feature 8 (C18:1 ω7c or C18:1 ω6c), summed feature 3 (C16:1 ω7c or C16:1 ω6c) and C18:1 2OH. The genomic DNA G + C content was 68.7%. The ANI values were 94.3%, 93.3% and 93.6% between Azospirillum baldaniorum Sp245T, Azospirillum brasilense ATCC 49958T, Azospirillum formosense CC-Nfb-7T and strain W712T, respectively, which were lower than the prokaryotic species delineation threshold of 95.0-96.0%. The digital DNA-DNA hybridization values between A. baldaniorum Sp245T, A. brasilense ATCC 49958T, A. formosense CC-Nfb-7T and strain W712T indicated that the candidate represents a novel genomic species. According to the phenotypic and genotypic characteristics, we propose that strain W712T warrants the assignment to a novel species, for which the name Azospirillum tabaci sp. nov. (type strain W712T = CGMCC 1.18567T = KCTC 82186T) is proposed.


Assuntos
Azospirillum , Rizosfera , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Nicotiana
4.
BMC Biol ; 19(1): 227, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663304

RESUMO

BACKGROUND: Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that transduces extracellular signals in virtually all eukaryotic cells. The soluble Beggiatoa photoactivatable adenylyl cyclase (bPAC) rapidly raises cAMP in blue light and has been used to study cAMP signaling pathways cell-autonomously. But low activity in the dark might raise resting cAMP in cells expressing bPAC, and most eukaryotic cyclases are membrane-targeted rather than soluble. Our aim was to engineer a plasma membrane-anchored PAC with no dark activity (i.e., no cAMP accumulation in the dark) that rapidly increases cAMP when illuminated. RESULTS: Using a streamlined method based on expression in Xenopus oocytes, we compared natural PACs and confirmed bPAC as the best starting point for protein engineering efforts. We identified several modifications that reduce bPAC dark activity. Mutating a phenylalanine to tyrosine at residue 198 substantially decreased dark cyclase activity, which increased 7000-fold when illuminated. Whereas Drosophila larvae expressing bPAC in mechanosensory neurons show nocifensive-like behavior even in the dark, larvae expressing improved soluble (e.g., bPAC(R278A)) and membrane-anchored PACs exhibited nocifensive responses only when illuminated. The plasma membrane-anchored PAC (PACmn) had an undetectable dark activity which increased >4000-fold in the light. PACmn does not raise resting cAMP nor, when expressed in hippocampal neurons, affect cAMP-dependent kinase (PKA) activity in the dark, but rapidly and reversibly increases cAMP and PKA activity in the soma and dendrites upon illumination. The peak responses to brief (2 s) light flashes exceed the responses to forskolin-induced activation of endogenous cyclases and return to baseline within seconds (cAMP) or ~10 min (PKA). CONCLUSIONS: PACmn is a valuable optogenetic tool for precise cell-autonomous and transient stimulation of cAMP signaling pathways in diverse cell types.


Assuntos
AMP Cíclico , Optogenética , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Drosophila/metabolismo , Luz , Transdução de Sinais
5.
Nature ; 597(7875): 245-249, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34433964

RESUMO

Transient neuromodulation can have long-lasting effects on neural circuits and motivational states1-4. Here we examine the dopaminergic mechanisms that underlie mating drive and its persistence in male mice. Brief investigation of females primes a male's interest to mate for tens of minutes, whereas a single successful mating triggers satiety that gradually recovers over days5. We found that both processes are controlled by specialized anteroventral and preoptic periventricular (AVPV/PVpo) dopamine neurons in the hypothalamus. During the investigation of females, dopamine is transiently released in the medial preoptic area (MPOA)-an area that is critical for mating behaviours. Optogenetic stimulation of AVPV/PVpo dopamine axons in the MPOA recapitulates the priming effect of exposure to a female. Using optical and molecular methods for tracking and manipulating intracellular signalling, we show that this priming effect emerges from the accumulation of mating-related dopamine signals in the MPOA through the accrual of cyclic adenosine monophosphate levels and protein kinase A activity. Dopamine transients in the MPOA are abolished after a successful mating, which is likely to ensure abstinence. Consistent with this idea, the inhibition of AVPV/PVpo dopamine neurons selectively demotivates mating, whereas stimulating these neurons restores the motivation to mate after sexual satiety. We therefore conclude that the accumulation or suppression of signals from specialized dopamine neurons regulates mating behaviours across minutes and days.


Assuntos
AMP Cíclico/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Comportamento Sexual Animal , Transdução de Sinais , Animais , Copulação , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Impulso (Psicologia) , Feminino , Masculino , Camundongos , Optogenética , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Resposta de Saciedade , Fatores de Tempo
6.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34244145

RESUMO

Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO2 and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl- and NO3 - currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+ As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata.

7.
Membranes (Basel) ; 11(4)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919843

RESUMO

Optogenetics was developed in the field of neuroscience and is most commonly using light-sensitive rhodopsins to control the neural activities. Lately, we have expanded this technique into plant science by co-expression of a chloroplast-targeted ß-carotene dioxygenase and an improved anion channelrhodopsin GtACR1 from the green alga Guillardia theta. The growth of Nicotiana tabacum pollen tube can then be manipulated by localized green light illumination. To extend the application of analogous optogenetic tools in the pollen tube system, we engineered another two ACRs, GtACR2, and ZipACR, which have different action spectra, light sensitivity and kinetic features, and characterized them in Xenopus laevis oocytes, Nicotiana benthamiana leaves and N. tabacum pollen tubes. We found that the similar molecular engineering method used to improve GtACR1 also enhanced GtACR2 and ZipACR performance in Xenopus laevis oocytes. The ZipACR1 performed in N. benthamiana mesophyll cells and N. tabacum pollen tubes with faster kinetics and reduced light sensitivity, allowing for optogenetic control of anion fluxes with better temporal resolution. The reduced light sensitivity would potentially facilitate future application in plants, grown under low ambient white light, combined with an optogenetic manipulation triggered by stronger green light.

8.
BMC Plant Biol ; 21(1): 93, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579187

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play important roles in essential biological processes. However, our understanding of lncRNAs as competing endogenous RNAs (ceRNAs) and their responses to nitrogen stress is still limited. RESULTS: Here, we surveyed the lncRNAs and miRNAs in maize inbred line P178 leaves and roots at the seedling stage under high-nitrogen (HN) and low-nitrogen (LN) conditions using lncRNA-Seq and small RNA-Seq. A total of 894 differentially expressed lncRNAs and 38 different miRNAs were identified. Co-expression analysis found that two lncRNAs and four lncRNA-targets could competitively combine with ZmmiR159 and ZmmiR164, respectively. To dissect the genetic regulatory by which lncRNAs might enable adaptation to limited nitrogen availability, an association mapping panel containing a high-density single-nucleotide polymorphism (SNP) array (56,110 SNPs) combined with variable LN tolerant-related phenotypes obtained from hydroponics was used for a genome-wide association study (GWAS). By combining GWAS and RNA-Seq, 170 differently expressed lncRNAs within the range of significant markers were screened. Moreover, 40 consistently LN-responsive genes including those involved in glutamine biosynthesis and nitrogen acquisition in root were identified. Transient expression assays in Nicotiana benthamiana demonstrated that LNC_002923 could inhabit ZmmiR159-guided cleavage of Zm00001d015521. CONCLUSIONS: These lncRNAs containing trait-associated significant SNPs could consider to be related to root development and nutrient utilization. Taken together, the results of our study can provide new insights into the potential regulatory roles of lncRNAs in response to LN stress, and give valuable information for further screening of candidates as well as the improvement of maize resistance to LN stress.


Assuntos
Nitrogênio/deficiência , RNA Longo não Codificante/genética , RNA de Plantas/genética , Zea mays/genética , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Glutamina/biossíntese , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma
9.
Nat Plants ; 7(2): 144-151, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33594268

RESUMO

While rhodopsin-based optogenetics has revolutionized neuroscience1,2, poor expression of opsins and the absence of the essential cofactor all-trans-retinal has complicated the application of rhodopsins in plants. Here, we demonstrate retinal production in plants and improved rhodopsin targeting for green light manipulation of plant cells using the Guillardia theta light-gated anion channelrhodopsin GtACR13. Green light induces a massive increase in anion permeability and pronounced membrane potential changes when GtACR1 is expressed, enabling non-invasive manipulation of plant growth and leaf development. Using light-driven anion loss, we could mimic drought conditions and bring about leaf wilting despite sufficient water supply. Expressed in pollen tubes, global GtACR1 activation triggers membrane potential depolarizations due to large anion currents. While global illumination was associated with a reversible growth arrest, local GtACR1 activation at the flanks of the apical dome steers growth direction away from the side with increased anion conductance. These results suggest a crucial role of anion permeability for the guidance of pollen tube tip growth. This plant optogenetic approach could be expanded to create an entire pallet of rhodopsin-based tools4, greatly facilitating dissection of plant ion-signalling pathways.


Assuntos
Nicotiana/genética , Nicotiana/metabolismo , Optogenética/métodos , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/fisiologia , Proteobactérias/química , Rodopsinas Microbianas/metabolismo
10.
Int J Mol Sci ; 21(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066112

RESUMO

The second messengers, cyclic adenosine 3'-5'-monophosphate (cAMP) and cyclic guanosine 3'-5'-monophosphate (cGMP), play important roles in many animal cells by regulating intracellular signaling pathways and modulating cell physiology. Environmental cues like temperature, light, and chemical compounds can stimulate cell surface receptors and trigger the generation of second messengers and the following regulations. The spread of cAMP and cGMP is further shaped by cyclic nucleotide phosphodiesterases (PDEs) for orchestration of intracellular microdomain signaling. However, localized intracellular cAMP and cGMP signaling requires further investigation. Optogenetic manipulation of cAMP and cGMP offers new opportunities for spatio-temporally precise study of their signaling mechanism. Light-gated nucleotide cyclases are well developed and applied for cAMP/cGMP manipulation. Recently discovered rhodopsin phosphodiesterase genes from protists established a new and direct biological connection between light and PDEs. Light-regulated PDEs are under development, and of demand to complete the toolkit for cAMP/cGMP manipulation. In this review, we summarize the state of the art, pros and cons of artificial and natural light-regulated PDEs, and discuss potential new strategies of developing light-gated PDEs for optogenetic manipulation.


Assuntos
Optogenética/métodos , Diester Fosfórico Hidrolases/metabolismo , Engenharia de Proteínas/métodos , Animais , Luz , Nucleotídeos Cíclicos/metabolismo , Optogenética/tendências , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/efeitos da radiação , Transdução de Sinais
11.
Front Cell Dev Biol ; 8: 617, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760723

RESUMO

Mitochondria are double membrane bound organelles indispensable for biological processes such as apoptosis, cell signaling, and the production of many important metabolites, which includes ATP that is generated during the process known as oxidative phosphorylation (OXPHOS). The inner membrane contains folds called cristae, which increase the membrane surface and thus the amount of membrane-bound proteins necessary for the OXPHOS. These folds have been of great interest not only because of their importance for energy conversion, but also because changes in morphology have been linked to a broad range of diseases from cancer, diabetes, neurodegenerative diseases, to aging and infection. With a distance between opposing cristae membranes often below 100 nm, conventional fluorescence imaging cannot provide a resolution sufficient for resolving these structures. For this reason, various highly specialized super-resolution methods including dSTORM, PALM, STED, and SIM have been applied for cristae visualization. Expansion Microscopy (ExM) offers the possibility to perform super-resolution microscopy on conventional confocal microscopes by embedding the sample into a swellable hydrogel that is isotropically expanded by a factor of 4-4.5, improving the resolution to 60-70 nm on conventional confocal microscopes, which can be further increased to ∼ 30 nm laterally using SIM. Here, we demonstrate that the expression of the mitochondrial creatine kinase MtCK linked to marker protein GFP (MtCK-GFP), which localizes to the space between the outer and the inner mitochondrial membrane, can be used as a cristae marker. Applying ExM on mitochondria labeled with this construct enables visualization of morphological changes of cristae and localization studies of mitochondrial proteins relative to cristae without the need for specialized setups. For the first time we present the combination of specific mitochondrial intermembrane space labeling and ExM as a tool for studying internal structure of mitochondria.

12.
BMC Biol ; 16(1): 144, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30522480

RESUMO

BACKGROUND: The green algae Chlamydomonas reinhardtii and Volvox carteri are important models for studying light perception and response, expressing many different photoreceptors. More than 10 opsins were reported in C. reinhardtii, yet only two-the channelrhodopsins-were functionally characterized. Characterization of new opsins would help to understand the green algae photobiology and to develop new tools for optogenetics. RESULTS: Here we report the characterization of a novel opsin family from these green algae: light-inhibited guanylyl cyclases regulated through a two-component-like phosphoryl transfer, called "two-component cyclase opsins" (2c-Cyclops). We prove the existence of such opsins in C. reinhardtii and V. carteri and show that they have cytosolic N- and C-termini, implying an eight-transmembrane helix structure. We also demonstrate that cGMP production is both light-inhibited and ATP-dependent. The cyclase activity of Cr2c-Cyclop1 is kept functional by the ongoing phosphorylation and phosphoryl transfer from the histidine kinase to the response regulator in the dark, proven by mutagenesis. Absorption of a photon inhibits the cyclase activity, most likely by inhibiting the phosphoryl transfer. Overexpression of Vc2c-Cyclop1 protein in V. carteri leads to significantly increased cGMP levels, demonstrating guanylyl cyclase activity of Vc2c-Cyclop1 in vivo. Live cell imaging of YFP-tagged Vc2c-Cyclop1 in V. carteri revealed a development-dependent, layer-like structure at the immediate periphery of the nucleus and intense spots in the cell periphery. CONCLUSIONS: Cr2c-Cyclop1 and Vc2c-Cyclop1 are light-inhibited and ATP-dependent guanylyl cyclases with an unusual eight-transmembrane helix structure of the type I opsin domain which we propose to classify as type Ib, in contrast to the 7 TM type Ia opsins. Overexpression of Vc2c-Cyclop1 protein in V. carteri led to a significant increase of cGMP, demonstrating enzyme functionality in the organism of origin. Fluorescent live cell imaging revealed that Vc2c-Cyclop1 is located in the periphery of the nucleus and in confined areas at the cell periphery.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Opsinas/genética , Volvox/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/efeitos da radiação , Opsinas/metabolismo , Optogenética , Fotobiologia , Volvox/metabolismo
13.
Nat Commun ; 9(1): 2046, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29799525

RESUMO

The cyclic nucleotides cAMP and cGMP are important second messengers that orchestrate fundamental cellular responses. Here, we present the characterization of the rhodopsin-guanylyl cyclase from Catenaria anguillulae (CaRhGC), which produces cGMP in response to green light with a light to dark activity ratio >1000. After light excitation the putative signaling state forms with τ = 31 ms and decays with τ = 570 ms. Mutations (up to 6) within the nucleotide binding site generate rhodopsin-adenylyl cyclases (CaRhACs) of which the double mutated YFP-CaRhAC (E497K/C566D) is the most suitable for rapid cAMP production in neurons. Furthermore, the crystal structure of the ligand-bound AC domain (2.25 Å) reveals detailed information about the nucleotide binding mode within this recently discovered class of enzyme rhodopsin. Both YFP-CaRhGC and YFP-CaRhAC are favorable optogenetic tools for non-invasive, cell-selective, and spatio-temporally precise modulation of cAMP/cGMP with light.


Assuntos
Adenilil Ciclases/química , Blastocladiomycota/enzimologia , AMP Cíclico/química , GMP Cíclico/química , Proteínas Fúngicas/química , Guanilato Ciclase/química , Rodopsina/química , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Sítios de Ligação , Blastocladiomycota/química , Blastocladiomycota/genética , Cristalização , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Ratos , Rodopsina/metabolismo
14.
Elife ; 62017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28784204

RESUMO

Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.


Assuntos
Potenciais de Ação , AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Mecanorreceptores/fisiologia , Receptores de Peptídeos/metabolismo , Células Receptoras Sensoriais/fisiologia , Animais , Drosophila , Fenômenos Eletrofisiológicos , Imagem Óptica
15.
Plant Physiol ; 160(2): 738-48, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22837356

RESUMO

Most of the world's natural fiber comes from cotton (Gossypium spp.), which is an important crop worldwide. Characterizing genes that regulate cotton yield and fiber quality is expected to benefit the sustainable production of natural fiber. Although a huge number of expressed sequence tag sequences are now available in the public database, large-scale gene function analysis has been hampered by the low-efficiency process of generating transgenic cotton plants. Tobacco rattle virus (TRV) has recently been reported to trigger virus-induced gene silencing (VIGS) in cotton leaves. Here, we extended the utility of this method by showing that TRV-VIGS can operate in reproductive organs as well. We used this method to investigate the function of KATANIN and WRINKLED1 in cotton plant development. Cotton plants with suppressed KATANIN expression produced shorter fibers and elevated weight ratio of seed oil to endosperm. By contrast, silencing of WRINKLED1 expression resulted in increased fiber length but reduced oil seed content, suggesting the possibility to increase fiber length by repartitioning carbon flow. Our results provide evidence that the TRV-VIGS system can be used for rapid functional analysis of genes involved in cotton fiber development.


Assuntos
Adenosina Trifosfatases/metabolismo , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gossypium/genética , Vírus de Plantas/genética , Adenosina Trifosfatases/genética , Agrobacterium tumefaciens/genética , Clonagem Molecular , Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica , Vetores Genéticos , Gossypium/crescimento & desenvolvimento , Gossypium/virologia , Katanina , Microscopia Eletrônica de Varredura , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , Proantocianidinas/genética , Proantocianidinas/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA