Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
Cell Rep Med ; 4(8): 101160, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586319

RESUMO

VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is a pleiotropic, severe autoinflammatory disease caused by somatic mutations in the ubiquitin-like modifier activating enzyme 1 (UBA1) gene. To elucidate VEXAS pathophysiology, we performed transcriptome sequencing of single bone marrow mononuclear cells and hematopoietic stem and progenitor cells (HSPCs) from VEXAS patients. HSPCs are biased toward myeloid (granulocytic) differentiation, and against lymphoid differentiation in VEXAS. Activation of multiple inflammatory pathways (interferons and tumor necrosis factor alpha) occurs ontogenically early in primitive hematopoietic cells and particularly in the myeloid lineage in VEXAS, and inflammation is prominent in UBA1-mutated cells. Dysregulation in protein degradation likely leads to higher stress response in VEXAS HSPCs, which positively correlates with inflammation. TCR usage is restricted and there are increased cytotoxicity and IFN-γ signaling in T cells. In VEXAS syndrome, both aberrant inflammation and myeloid predominance appear intrinsic to hematopoietic stem cells mutated in UBA1.


Assuntos
Células-Tronco Hematopoéticas , Inflamação , Humanos , Proteólise , Diferenciação Celular , Inflamação/genética
3.
Blood Adv ; 7(1): 73-86, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895513

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that originate in the bone marrow (BM) and have immunoregulatory functions. MDSCs have been implicated in the pathogenesis of several autoimmune diseases but have not been investigated in immune aplastic anemia (AA). We examined the roles of granulocytic-MDSCs (G-MDSCs) in murine models of human AA and BM failure (BMF). As both prophylaxis and therapy, BM-derived G-MDSCs improved pancytopenia and BM cellularity and suppressed BM T-cell infiltration in major histocompatibility complex (MHC)-matched C.B10 BMF mice. These effects were not obtained in the MHC-mismatched CByB6F1 AA model, likely because of MHC disparity between G-MDSCs and donor T cells. Single-cell RNA sequencing demonstrated that G-MDSCs downregulated cell cycle-related genes in BM-infiltrated T cells, consistent with suppression of T-cell proliferation by G-MDSCs through reactive oxygen species pathways. Clearance of G-MDSCs in the MHC-mismatched CByB6F1 model using anti-Ly6G antibody facilitated T cell-mediated BM destruction, suggesting an intrinsic immunosuppressive property of G-MDSCs. However, the same anti-Ly6G antibody in the MHC-matched C.B10 AA model mildly mitigated BMF, associated with expansion of an intermediate Ly6G population. Our results demonstrate that G-MDSC eradication and therapeutic efficacy are immune context-dependent.


Assuntos
Anemia Aplástica , Células Supressoras Mieloides , Pancitopenia , Humanos , Animais , Camundongos , Granulócitos , Células Mieloides , Transtornos da Insuficiência da Medula Óssea/metabolismo , Anemia Aplástica/terapia
4.
Blood ; 141(1): 72-89, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36130301

RESUMO

Immune aplastic anemia (AA) is a severe blood disease characterized by T-lymphocyte- mediated stem cell destruction. Hematopoietic stem cell transplantation and immunosuppression are effective, but they entail costs and risks, and are not always successful. The Janus kinase (JAK) 1/2 inhibitor ruxolitinib (RUX) suppresses cytotoxic T-cell activation and inhibits cytokine production in models of graft-versus-host disease. We tested RUX in murine immune AA for potential therapeutic benefit. After infusion of lymph node (LN) cells mismatched at the major histocompatibility complex [C67BL/6 (B6)⇒CByB6F1], RUX, administered as a food additive (Rux-chow), attenuated bone marrow hypoplasia, ameliorated peripheral blood pancytopenia, preserved hematopoietic progenitors, and prevented mortality, when used either prophylactically or therapeutically. RUX suppressed the infiltration, proliferation, and activation of effector T cells in the bone marrow and mitigated Fas-mediated apoptotic destruction of target hematopoietic cells. Similar effects were obtained when Rux-chow was fed to C.B10 mice in a minor histocompatibility antigen mismatched (B6⇒C.B10) AA model. RUX only modestly suppressed lymphoid and erythroid hematopoiesis in normal and irradiated CByB6F1 mice. Our data support clinical trials of JAK/STAT inhibitors in human AA and other immune bone marrow failure syndromes.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Pancitopenia , Camundongos , Humanos , Animais , Pancitopenia/patologia , Anemia Aplástica/patologia , Transtornos da Insuficiência da Medula Óssea/patologia , Medula Óssea/patologia , Doenças da Medula Óssea/patologia , Janus Quinase 1
5.
Genes (Basel) ; 13(10)2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36292775

RESUMO

(1) Background: analyses of gene networks can elucidate hematopoietic differentiation from single-cell gene expression data, but most algorithms generate only a single, static network. Because gene interactions change over time, it is biologically meaningful to examine time-varying structures and to capture dynamic, even transient states, and cell-cell relationships. (2) Methods: a transcriptomic atlas of hematopoietic stem and progenitor cells was used for network analysis. After pseudo-time ordering with Monocle 2, LOGGLE was used to infer time-varying networks and to explore changes of differentiation gene networks over time. A range of network analysis tools were used to examine properties and genes in the inferred networks. (3) Results: shared characteristics of attributes during the evolution of differentiation gene networks showed a "U" shape of network density over time for all three branches for human and mouse. Differentiation appeared as a continuous process, originating from stem cells, through a brief transition state marked by fewer gene interactions, before stabilizing in a progenitor state. Human and mouse shared hub genes in evolutionary networks. (4) Conclusions: the conservation of network dynamics in the hematopoietic systems of mouse and human was reflected by shared hub genes and network topological changes during differentiation.


Assuntos
Redes Reguladoras de Genes , Sistema Hematopoético , Humanos , Diferenciação Celular/genética , Algoritmos , Transcriptoma/genética
6.
Cancers (Basel) ; 14(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36230879

RESUMO

(1) Background: Single-cell RNA sequencing (scRNA-seq) data are useful for decoding cell-cell communication. CellCall is a tool that is used to infer inter- and intracellular communication pathways by integrating paired ligand-receptor (L-R) and transcription factor (TF) activities from steady-state data and thus cannot directly handle two-condition comparisons. For tumor and healthy status, it can only individually analyze cells from tumor or healthy tissue and examine L-R pairs only identified in either tumor or healthy controls, but not both together. Furthermore, CellCall is highly affected by gene expression specificity in tissues. (2) Methods: CellCallEXT is an extension of CellCall that deconvolutes intercellular communication and related internal regulatory signals based on scRNA-seq. Information on Reactome was retrieved and integrated with prior knowledge of L-R-TF signaling and gene regulation datasets of CellCall. (3) Results: CellCallEXT was successfully applied to examine tumors and immune cell microenvironments and to identify the altered L-R pairs and downstream gene regulatory networks among immune cells. Application of CellCallEXT to scRNA-seq data from patients with deficiency of adenosine deaminase 2 demonstrated its ability to impute dysfunctional intercellular communication and related transcriptional factor activities. (4) Conclusions: CellCallEXT provides a practical tool to examine intercellular communication in disease based on scRNA-seq data.

8.
Nat Commun ; 13(1): 1982, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35411048

RESUMO

T-cell large granular lymphocyte leukemia (T-LGLL) is a lymphoproliferative disease and bone marrow failure syndrome which responds to immunosuppressive therapies. We show single-cell TCR coupled with RNA sequencing of CD3+ T cells from 13 patients, sampled before and after alemtuzumab treatments. Effector memory T cells and loss of T cell receptor (TCR) repertoire diversity are prevalent in T-LGLL. Shared TCRA and TCRB clonotypes are absent. Deregulation of cell survival and apoptosis gene programs, and marked downregulation of apoptosis genes in CD8+ clones, are prominent features of T-LGLL cells. Apoptosis genes are upregulated after alemtuzumab treatment, especially in responders than non-responders; baseline expression levels of apoptosis genes are predictive of hematologic response. Alemtuzumab does not attenuate TCR clonality, and TCR diversity is further skewed after treatment. Inferences made from analysis of single cell data inform understanding of the pathophysiologic mechanisms of clonal expansion and persistence in T-LGLL.


Assuntos
Leucemia Linfocítica Granular Grande , Alemtuzumab/uso terapêutico , Células Clonais , Humanos , Leucemia Linfocítica Granular Grande/genética , Receptores de Antígenos de Linfócitos T/genética , Análise de Sequência de RNA
9.
BMC Bioinformatics ; 23(Suppl 3): 98, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313800

RESUMO

BACKGROUND: Although both copy number variations (CNVs) and single nucleotide variations (SNVs) detected by single-cell RNA sequencing (scRNA-seq) are used to study intratumor heterogeneity and detect clonal groups, a software that integrates these two types of data in the same cells is unavailable. RESULTS: We developed Clonal Architecture with Integration of SNV and CNV (CAISC), an R package for scRNA-seq data analysis that clusters single cells into distinct subclones by integrating CNV and SNV genotype matrices using an entropy weighted approach. The performance of CAISC was tested on simulation data and four real datasets, which confirmed its high accuracy in sub-clonal identification and assignment, including subclones which cannot be identified using one type of data alone. Furthermore, integration of SNV and CNV allowed for accurate examination of expression changes between subclones, as demonstrated by the results from trisomy 8 clones of the myelodysplastic syndromes (MDS) dataset. CONCLUSIONS: CAISC is a powerful tool for integration of CNV and SNV data from scRNA-seq to identify clonal clusters with better accuracy than obtained from a single type of data. CAISC allows users to interactively examine clonal assignments.


Assuntos
Variações do Número de Cópias de DNA , Nucleotídeos , Heterogeneidade Genética , Mutação , Análise de Sequência de RNA/métodos , Software
10.
J Leukoc Biol ; 111(2): 301-312, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34730257

RESUMO

Deficiency of adenosine deaminase 2 (DADA2) is a monogenic vasculitis syndrome caused by autosomal-recessive loss-of-function mutations in the ADA2 gene (previously known as CECR1). Vasculitis, vasculopathy, and inflammation are dominant clinical features of this disease; the spectrum of manifestations includes immunodeficiency and lymphoproliferation as well as hematologic manifestations. ADA2 is primarily secreted by stimulated monocytes and macrophages. Aberrant monocyte differentiation to macrophages and neutrophils are important in the pathogenesis of DADA2, but little is known about T lymphocytes in this disease. We performed combined single-cell RNA sequencing and single-cell TCR sequencing in order to profile T cell repertoires in 10 patients with DADA2. Although there were no significant alterations of T cell subsets, we observed activation of both CD8+ and CD4+ T cells. There was no clonal expansion of T cells: most TCRs were expressed at basal levels in patients and healthy donors. TCR usage was private to individual patients and not disease specific, indicating as unlikely a common pathogenic background or predisposition to a common pathogen. We recognized activation of IFN pathways as a signature of T cells and STAT1 as a hub gene in the gene network of T cell activation and cytotoxicity. Overall, T cells in DADA2 patients showed distinct cell-cell interactions with monocytes, as compared with healthy donors, and many of these ligand-receptor interactions likely drove up-regulation of STAT1 in both T cells and other immune cells in patients. Our analysis reveals previously undercharacterized cell characteristics in DADA2.


Assuntos
Adenosina Desaminase/deficiência , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Síndromes de Imunodeficiência/patologia , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Dermatopatias/patologia , Linfócitos T/patologia , Doenças Vasculares/patologia , Adenosina Desaminase/genética , Adolescente , Adulto , Estudos de Casos e Controles , Células Cultivadas , Criança , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Fator de Transcrição STAT1/genética , Análise de Célula Única , Dermatopatias/genética , Dermatopatias/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Doenças Vasculares/genética , Doenças Vasculares/imunologia , Adulto Jovem
11.
J Leukoc Biol ; 110(3): 409-424, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33988272

RESUMO

Deficiency of adenosine deaminase 2 (DADA2) is a rare autosomal recessive disease caused by loss-of-function variants in the ADA2 gene. DADA2 typically presents in childhood and is characterized by vasculopathy, stroke, inflammation, immunodeficiency, as well as hematologic manifestations. ADA2 protein is predominantly present in stimulated monocytes, dendritic cells, and macrophages. To elucidate molecular mechanisms in DADA2, CD14+ monocytes from 14 patients and 6 healthy donors were analyzed using single-cell RNA sequencing (scRNA-seq). Monocytes were purified by positive selection based on CD14 expression. Subpopulations were imputed from their transcriptomes. Based on scRNA-seq, monocytes could be classified as classical, intermediate, and nonclassical. Further, we used gene pathway analytics to interpret patterns of up- and down-regulated gene transcription. In DADA2, the frequency of nonclassical monocytes was higher compared with that of healthy donors, and M1 macrophage markers were up-regulated in patients. By comparing gene expression of each monocyte subtype between patients and healthy donors, we identified upregulated immune response pathways, including IFNα/ß and IFNγ signaling, in all monocyte subtypes. Distinctively, the TNFR2 noncanonical NF-κB pathway was up-regulated only in nonclassical monocytes. Patients' plasma showed increased IFNγ and TNFα levels. Our results suggest that elevated IFNγ activates cell signaling, leading to differentiation into M1 macrophages from monocytes and release of TNFα. Immune responses and more general response to stimuli pathways were up-regulated in DADA2 monocytes, and protein synthesis pathways were down-regulated, perhaps as stress responses. Our identification of novel aberrant immune pathways has implications for therapeutic approaches in DADA2 (registered at clinicaltrials.gov NCT00071045).


Assuntos
Agamaglobulinemia/genética , Agamaglobulinemia/patologia , Monócitos/patologia , Análise de Sequência de RNA , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/patologia , Análise de Célula Única , Adenosina Desaminase/genética , Adolescente , Adulto , Agamaglobulinemia/sangue , Agamaglobulinemia/enzimologia , Criança , Pré-Escolar , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interferons/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Imunodeficiência Combinada Severa/sangue , Imunodeficiência Combinada Severa/enzimologia , Transdução de Sinais , Doadores de Tecidos , Adulto Jovem
12.
Cells ; 10(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919312

RESUMO

(1) Background: mouse models are fundamental to the study of hematopoiesis, but comparisons between mouse and human in single cells have been limited in depth. (2) Methods: we constructed a single-cell resolution transcriptomic atlas of hematopoietic stem and progenitor cells (HSPCs) of human and mouse, from a total of 32,805 single cells. We used Monocle to examine the trajectories of hematopoietic differentiation, and SCENIC to analyze gene networks underlying hematopoiesis. (3) Results: After alignment with Seurat 2, the cells of mouse and human could be separated by same cell type categories. Cells were grouped into 17 subpopulations; cluster-specific genes were species-conserved and shared functional themes. The clustering dendrogram indicated that cell types were highly conserved between human and mouse. A visualization of the Monocle results provided an intuitive representation of HSPC differentiation to three dominant branches (Erythroid/megakaryocytic, Myeloid, and Lymphoid), derived directly from the hematopoietic stem cell and the long-term hematopoietic stem cells in both human and mouse. Gene regulation was similarly conserved, reflected by comparable transcriptional factors and regulatory sequence motifs in subpopulations of cells. (4) Conclusions: our analysis has confirmed evolutionary conservation in the hematopoietic systems of mouse and human, extending to cell types, gene expression and regulatory elements.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Análise de Célula Única/métodos , Transcriptoma , Animais , Linhagem da Célula , Evolução Molecular , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos
13.
BMC Genomics ; 21(Suppl 11): 849, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33372598

RESUMO

BACKGROUND: Presently, there is no comprehensive analysis of the transcription regulation network in hematopoiesis. Comparison of networks arising from gene co-expression across species can facilitate an understanding of the conservation of functional gene modules in hematopoiesis. RESULTS: We used single-cell RNA sequencing to profile bone marrow from human and mouse, and inferred transcription regulatory networks in each species in order to characterize transcriptional programs governing hematopoietic stem cell differentiation. We designed an algorithm for network reconstruction to conduct comparative transcriptomic analysis of hematopoietic gene co-expression and transcription regulation in human and mouse bone marrow cells. Co-expression network connectivity of hematopoiesis-related genes was found to be well conserved between mouse and human. The co-expression network showed "small-world" and "scale-free" architecture. The gene regulatory network formed a hierarchical structure, and hematopoiesis transcription factors localized to the hierarchy's middle level. CONCLUSIONS: Transcriptional regulatory networks are well conserved between human and mouse. The hierarchical organization of transcription factors may provide insights into hematopoietic cell lineage commitment, and to signal processing, cell survival and disease initiation.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Hematopoese/genética , Humanos , Camundongos , Análise de Sequência de RNA
14.
BMC Res Notes ; 13(1): 514, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168060

RESUMO

OBJECTIVE: Single cell methodology enables detection and quantification of transcriptional changes and unravelling dynamic aspects of the transcriptional heterogeneity not accessible using bulk sequencing approaches. We have applied single-cell RNA-sequencing (scRNA-seq) to fresh human bone marrow CD34+ cells and profiled 391 single hematopoietic stem/progenitor cells (HSPCs) from healthy donors to characterize lineage- and stage-specific transcription during hematopoiesis. RESULTS: Cells clustered into six distinct groups, which could be assigned to known HSPC subpopulations based on lineage specific genes. Reconstruction of differentiation trajectories in single cells revealed four committed lineages derived from HSCs, as well as dynamic expression changes underlying cell fate during early erythroid-megakaryocytic, lymphoid, and granulocyte-monocyte differentiation. A similar non-hierarchical pattern of hematopoiesis could be derived from analysis of published single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), consistent with a sequential relationship between chromatin dynamics and regulation of gene expression during lineage commitment (first, altered chromatin conformation, then mRNA transcription). Computationally, we have reconstructed molecular trajectories connecting HSCs directly to four hematopoietic lineages. Integration of long noncoding RNA (lncRNA) expression from the same cells demonstrated mRNA transcriptome, lncRNA, and the epigenome were highly homologous in their pattern of gene activation and suppression during hematopoietic cell differentiation.


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Diferenciação Celular/genética , Linhagem da Célula/genética , Hematopoese/genética , Humanos , RNA , Análise de Sequência de RNA , Análise de Célula Única
15.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858886

RESUMO

Specific-pathogen-free (SPF) mice have improved hematopoietic characteristics relative to germ-free mice, however, it is not clear whether improvements in hematopoietic traits will continue when the level of microorganism exposure is further increased. We co-housed SPF C57BL/6 mice in a conventional facility (CVT) and found a significant increase in gut microbiota diversity along with increased levels of myeloid cells and T cells, especially effector memory T cells. Through single cell RNA sequencing of sorted KL (c-Kit+Lin-) cells, we imputed a decline in long-term hematopoietic stem cells and an increase in granulocyte-monocyte progenitors in CVT mice with up-regulation of genes associated with cell survival. Bone marrow transplantation through competitive repopulation revealed a significant increase in KSL (c-Kit+Sca-1+Lin-) cell reconstitution in recipients of CVT donor cells which occurred when donors were co-housed for both one and twelve months. However, there was minimal to no gain in mature blood cell engraftment in recipients of CVT donor cells relative to those receiving SPF donor cells. We conclude that co-housing SPF mice with mice born in a conventional facility increased gut microbiota diversity, augmented myeloid cell production and T cell activation, stimulated KSL cell reconstitution, and altered hematopoietic gene expression.


Assuntos
Bactérias/classificação , Perfilação da Expressão Gênica/métodos , Hematopoese , Células Mieloides/metabolismo , Análise de Sequência de RNA/métodos , Linfócitos T/metabolismo , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Transplante de Medula Óssea , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Abrigo para Animais , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Análise de Célula Única , Organismos Livres de Patógenos Específicos
16.
Blood Adv ; 4(12): 2656-2670, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32556286

RESUMO

Constitutional GATA2 deficiency caused by heterozygous germline GATA2 mutations has a broad spectrum of clinical phenotypes, including systemic infections, lymphedema, cytopenias, and myeloid neoplasms. Genotype-phenotype correlation is not well understood mechanistically in GATA2 deficiency. We performed whole transcriptome sequencing of single hematopoietic stem and progenitor cells from 8 patients, who had pathogenic GATA2 mutations and myelodysplasia. Mapping patients' cells onto normal hematopoiesis, we observed deficiency in lymphoid/myeloid progenitors, also evident from highly constrained gene correlations. HSPCs of patients exhibited distinct patterns of gene expression and coexpression compared with counterparts from healthy donors. Distinct lineages showed differently altered transcriptional profiles. Stem cells in patients had dysregulated gene expression related to apoptosis, cell cycle, and quiescence; increased expression of erythroid/megakaryocytic priming genes; and decreased lymphoid priming genes. The prominent deficiency in lympho-myeloid lineages in GATA2 deficiency appeared at least partly due to the expression of aberrant gene programs in stem cells prior to lineage commitment. We computationally imputed cells with chromosomal abnormalities and determined their gene expression; DNA repair genes were downregulated in trisomy 8 cells, potentially rendering these cells vulnerable to second-hit somatic mutations and additional chromosomal abnormalities. Cells with complex cytogenetic abnormalities showed defects in genes related to multilineage differentiation and cell cycle. Single-cell RNA sequencing is powerful in resolving transcriptomes of cell subpopulations despite a paucity of cells in marrow failure. Our study discloses previously uncharacterized transcriptome signatures of stem cells and progenitors in GATA2 deficiency, providing a broad perspective of potential mechanisms by which germline mutations modulate early hematopoiesis in a human disease. This trial was registered at www.clinicaltrials.gov as NCT01905826, NCT01861106, and NCT00001620.


Assuntos
Deficiência de GATA2 , Fator de Transcrição GATA2/genética , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , RNA , Transcriptoma
17.
Haematologica ; 104(5): 894-906, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30545929

RESUMO

Long noncoding RNAs (lncRNAs) are regulators of cell differentiation and development. The lncRNA transcriptome in human hematopoietic stem and progenitor cells is not comprehensively defined. We investigated lncRNAs in 979 human bone marrow-derived CD34+ cells by single cell RNA sequencing followed by de novo transcriptome reconstruction. We identified 3,173 lncRNAs in total, among which 2,365 were previously unknown, and we characterized lncRNA stem, differentiation, and maturation signatures. lncRNA expression exhibited high cell-to-cell variation, which was only apparent in single cell analysis. lncRNA expression followed a lineage-specific and highly dynamic pattern during early hematopoiesis. lncRNAs in hematopoietic cells closely correlated with protein-coding genes of known functions in the regulation of hematopoiesis and cell fate decisions, and the potential regulatory roles of lncRNAs in hematopoiesis were imputed by projection from protein-coding genes with a "guilt-by-association" approach. We characterized lncRNAs preferentially expressed in hematopoietic stem cells and in various downstream differentiated lineage progenitors. We also profiled lncRNA expression in single cells from patients with myelodysplastic syndromes and in aneuploid cells in particular. Our study provides a global view of lncRNAs in human hematopoietic stem and progenitor cells. We observed a highly ordered pattern of lncRNA expression and participation in regulation of early hematopoiesis, and coordinate aberrant messenger RNA and lncRNA transcriptomes in dysplastic hematopoiesis. (Registered at clinicaltrials.gov with identifiers: 00001620, 00001397).


Assuntos
Biomarcadores Tumorais/genética , Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Síndromes Mielodisplásicas/genética , RNA Longo não Codificante/genética , Análise de Célula Única/métodos , Transcriptoma , Medula Óssea/patologia , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/citologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndromes Mielodisplásicas/patologia
18.
Int J Oncol ; 52(4): 1209-1223, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29532865

RESUMO

Additional sex combs-like 1 (ASXL1) is a well­known tumor suppressor gene and epigenetic modifier. ASXL1 mutations are frequent in myeloid malignances; these mutations are risk factors for the development of myelodysplasia and also appear as small clones during normal aging. ASXL1 appears to act as an epigenetic regulator of cell survival and myeloid differentiation; however, the molecular mechanisms underlying the malignant transformation of cells with ASXL1 mutations are not well defined. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome editing, heterozygous and homozygous ASXL1 mutations were introduced into human U937 leukemic cells. Comparable cell growth and cell cycle progression were observed between wild-type (WT) and ASXL1-mutated U937 cells. Drug-induced cytotoxicity, as measured by growth inhibition and apoptosis in the presence of the cell-cycle active agent 5-fluorouracil, was variable among the mutated clones but was not significantly different from WT cells. In addition, ASXL1-mutated cells exhibited defects in monocyte/macrophage differentiation. Transcriptome analysis revealed that ASXL1 mutations altered differentiation of U937 cells by disturbing genes involved in myeloid differentiation, including cytochrome B-245 ß chain and C-type lectin domain family 5, member A. Dysregulation of numerous gene sets associated with cell death and survival were also observed in ASXL1-mutated cells. These data provide evidence regarding the underlying molecular mechanisms induced by mutated ASXL1 in leukemogenesis.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielomonocítica Crônica/genética , Mutação , Proteínas Repressoras/genética , Sistemas CRISPR-Cas , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/genética , Fluoruracila/farmacologia , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielomonocítica Crônica/patologia , Acetato de Tetradecanoilforbol/farmacologia , Transcriptoma , Células U937
19.
Blood Cells Mol Dis ; 69: 10-22, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29324392

RESUMO

DNA methyltransferase 3A (DNMT3A) mediates de novo DNA methylation. Mutations in DNMT3A are associated with hematological malignancies, most frequently acute myeloid leukemia. DNMT3A mutations are hypothesized to establish a pre-leukemic state, rendering cells vulnerable to secondary oncogenic mutations and malignant transformation. However, the mechanisms by which DNMT3A mutations contribute to leukemogenesis are not well-defined. Here, we successfully created four DNMT3A-mutated K562 cell lines with frameshift mutations resulting in truncated DNMT3A proteins. DNMT3A-mutated cell lines exhibited significantly impaired growth and increased apoptotic activity compared to wild-type (WT) cells. Consistent with previous studies, DNMT3A-mutated cells displayed impaired differentiation capacity. RNA-seq was used to compare transcriptomes of DNMT3A-mutated and WT cells; DNMT3A ablation resulted in downregulation of genes involved in spliceosome function, causing dysfunction of RNA splicing. Unexpectedly, we observed DNMT3A-mutated cells to exhibit marked genomic instability and an impaired DNA damage response compared to WT. CRISPR/Cas9-mediated DNMT3A-mutated K562 cells may be used to model effects of DNMT3A mutations in human cells. Our findings implicate aberrant splicing and induction of genomic instability as potential mechanisms by which DNMT3A mutations might predispose to malignancy.


Assuntos
Sistemas CRISPR-Cas , DNA (Citosina-5-)-Metiltransferases/genética , Edição de Genes , Instabilidade Genômica , Splicing de RNA , Apoptose/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/metabolismo , Dano ao DNA , DNA Metiltransferase 3A , Humanos , Células K562 , Mutação , Análise de Sequência de DNA , Spliceossomos/metabolismo
20.
Blood ; 130(25): 2762-2773, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29030335

RESUMO

Cancer cells frequently exhibit chromosomal abnormalities. Specific cytogenetic aberrations often are predictors of outcome, especially in hematologic neoplasms, such as monosomy 7 in myeloid malignancies. The functional consequences of aneuploidy at the cellular level are difficult to assess because of a lack of convenient markers to distinguish abnormal from diploid cells. We performed single-cell RNA sequencing (scRNA-seq) to study hematopoietic stem and progenitor cells from the bone marrow of 4 healthy donors and 5 patients with bone marrow failure and chromosome gain or loss. In total, transcriptome sequences were obtained from 391 control cells and 588 cells from patients. We characterized normal hematopoiesis as binary differentiation from stem cells to erythroid and myeloid-lymphoid pathways. Aneuploid cells were distinguished from diploid cells in patient samples by computational analyses of read fractions and gene expression of individual chromosomes. We confirmed assignment of aneuploidy to individual cells quantitatively, by copy-number variation, and qualitatively, by loss of heterozygosity. When we projected patients' single cells onto the map of normal hematopoiesis, diverse patterns were observed, broadly reflecting clinical phenotypes. Patients' monosomy 7 cells showed downregulation of genes involved in immune response and DNA damage checkpoint and apoptosis pathways, which may contribute to the clonal expansion of monosomy 7 cells with accumulated gene mutations. scRNA-seq is a powerful technique through which to infer the functional consequences of chromosome gain and loss and explore gene targets for directed therapy.


Assuntos
Aneuploidia , Células-Tronco Hematopoéticas , Análise de Sequência de RNA , Análise de Célula Única/métodos , Transcriptoma/genética , Adulto , Células da Medula Óssea , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/patologia , Estudos de Casos e Controles , Deleção Cromossômica , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 7 , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA