Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Histochem ; 67(2)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37132497

RESUMO

The study aimed to explore the functional role of fibronectin type III domain containing 1 (FNDC1) in nonsmall cell lung cancer (NSCLC), as well as the mechanism governing its expression. The expression levels of FNDC1 and related genes in tissue and cell samples were detected by qRT-PCR. Kaplan-Meier analysis was employed to analyze the association between FNDC1 level and the overall survival of NSCLC patients. Functional experiments such as CCK-8 proliferation, colony formation, EDU staining, migration and invasion assays were conducted to investigate the functional role of FNDC1 in regulating the malignancy of NSCLC cells. Bioinformatic tools and dual-luciferase reporter assay were used to identify the miRNA regulator of FNDC1 in NSCLC cells. Our data revealed the upregulation of FNDC1 at mRNA and protein levels in NSCLC tumor tissues cancer cell lines, compared with normal counterparts. NSCLC patients with higher FNDC1 expression suffered from a poorer overall survival. FNDC1 knockdown significantly suppressed the proliferation, migration and invasion of NSCLC cells, and had an inhibitory effect on tube formation. We further demonstrated that miR-143-3p was an upstream regulator of FNDC1 and miR-143-3p expression was repressed in NSCLC samples. Similar to FNDC1 knockdown, miR-143-3p overexpression inhibited the growth, migration and invasion of NSCLC cells. FNDC1 overexpression could partially rescue the effect of miR-143-3p overexpression.  FNDC1 silencing also suppressed the tumorigenesis of NSCLC cells in mouse model. In conclusion, FNDC1 promotes the malignant prototypes of NSCLC cells. miR-143-3p is a negative regulator of FNDC1 in NSCLC cells, which may serve as a promising therapeutic target in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Proteínas de Neoplasias , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células/genética , Domínio de Fibronectina Tipo III , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , Humanos , Proteínas de Neoplasias/genética
2.
Theranostics ; 12(15): 6665-6681, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185610

RESUMO

Rationale: Although stapled peptides offer a powerful solution to overcome the susceptibility of linear peptides to proteolytic degradation and improve their ability to cross membranes, an efficient and durable disease treatment strategy has not yet been developed due to the inevitable elimination of peptide inhibitors and rapid accumulation of target proteins. Methods: Herein we developed stapled peptide-based proteolysis-targeting chimeras (SP-PROTACs), that simultaneously exhibited improved cellular uptake and proteolytic stability attributed to the stapled peptides, and efficient target protein degradation promoted by the PROTACs. Based on the PMI peptide with dual specificity for both MDM2 and MDMX, a series of SP-PROTACs were designed. Results: Among them, the optimized SPMI-HIF2-1 exhibited similar binding affinity with MDM2 and MDMX but obviously higher helical contents, improved proteolytic stability, better cellular permeability, and a better pharmacokinetic profile compared with its linear counterpart. Importantly, SPMI-HIF2-1 could effectively kill cancer cells and inhibit tumor progression in subcutaneous and orthotopic colorectal cancer xenograft models through simultaneously promoting the atypical degradation of both MDM2 and MDMX and durable p53 activation. An FP-based binding assay and structural modeling analysis of the ternary complex suggested that SPMI-HIF2-1 simultaneously bound with the target protein and E3 ligase. Conclusion: Our findings not only provide a new class of anticancer drug candidates, but also bridge the gap and reduce the physical distance between peptides and PROTACs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Neoplasias/tratamento farmacológico , Peptídeos/química , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo
3.
Biomed Chromatogr ; 32(6): e4208, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29431198

RESUMO

This study aimed to investigate the efficacy of mangiferin, including its known antioxidant and anti-inflammatory effects on sepsis-induced lung injury induced by a classical cecal ligation and puncture (CLP) models in mouse using a metabolomics approach. A total of 24 mice were randomly divided into four groups: the sham group was given saline before sham operation. The CLP group received the CLP operation only. HMF and LMF groups were given mangiferin treatment of high dose and low dose of mangiferin, respectively, before the CLP operation. One week after treatment, the mice were sacrificed and their lungs were collected for metabolomics analysis. We developed ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry to perform lung metabolic profiling analysis. With the methods of principal component analysis and partial least squares discriminant analysis, 58 potential metabolites associated with amino acid metabolism, purine metabolism, lipid metabolism and energy regulation were observed to be increased or reduced in HMF and LMF groups compared with the CLP group. Conclusively, our results suggest that mangiferin plays a protective role in the moderation of sepsis-induced lung injury through reducing oxidative stress, regulating lipid metabolism and energy biosynthesis.


Assuntos
Antioxidantes/farmacologia , Lesão Pulmonar/metabolismo , Metaboloma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sepse/metabolismo , Xantonas/farmacologia , Animais , Antioxidantes/administração & dosagem , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Pulmão/efeitos dos fármacos , Pulmão/patologia , Lesão Pulmonar/patologia , Masculino , Espectrometria de Massas , Metabolômica , Camundongos , Camundongos Endogâmicos ICR , Xantonas/administração & dosagem
4.
Int J Clin Exp Pathol ; 8(3): 2680-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26045773

RESUMO

The aim of this study is to evaluate the protective effect and underlying mechanism of hydrogen gas (H2) to glyoxylate induced renal calcium oxalate (CaOx) crystal deposition in mice. In present work, rodent renal CaOx crystal deposition model was introduced by intra-abdominal injection of glyoxylate (100 mg/kg/d) for 5 days. Two days before administration of glyoxylate, inhalation of H2 for 30 min per day was initiated and continued for 7 days. By the end of the study, the samples of 24 hours urine, serum and renal tissue were collected for biochemical and pathological assay. According to levels of urine calcium excretion, renal calcium deposition, a serum excretion of kidney injury molecule-1 (KIM-1) assay and a TUNEL assay, inhalation of H2 could successfully decrease the CaOx crystallizations and protect against renal injury. Crystal deposition in the kidneys is associated with oxidative stress, which was indicated by increased levels of renal malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) and decreased activities of superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT). These effects were reversed by a high-dose H2 pretreatment. The renal expressions of osteopontin (OPN), CD44, monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10) were markedly increased in glyoxylate-treated mice, and H2 significantly attenuated the increase of OPN, CD44 and MCP-1 but upregulated the expression of IL-10. Our findings demonstrate that inhalation of H2 reduces renal crystallization, renal oxidative injury and inflammation and it may be a candidate agent with few adverse effects for prevention of nephrolithiasis.


Assuntos
Hidrogênio/administração & dosagem , Rim/efeitos dos fármacos , Nefrolitíase/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Administração por Inalação , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Glioxilatos/toxicidade , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
J Ethnopharmacol ; 166: 323-32, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25794803

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Orthosiphon stamineus (OS), a traditional Chinese herb, is often used for promoting urination and treating nephrolithiasis. AIM OF THE STUDY: Urolithiasis is a major worldwide public health burden due to its high incidence of recurrence and damage to renal function. However, the etiology for urolithiasis is not well understood. Metabonomics, the systematic study of small molecule metabolites present in biological samples, has become a valid and powerful tool for understanding disease phenotypes. In this study, a urinary metabolic profiling analysis was performed in a mouse model of renal calcium oxalate crystal deposition to identify potential biomarkers for crystal-induced renal damage and the anti-crystal mechanism of OS. MATERIALS AND METHODS: Thirty six mice were randomly divided into six groups including Saline, Crystal, Cystone and OS at dosages of 0.5g/kg, 1g/kg, and 2g/kg. A metabonomics approach using ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) was developed to perform the urinary metabolic profiling analysis. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were utilized to identify differences between the metabolic profiles of mice in the saline control group and crystal group. RESULTS: Using partial least squares-discriminant analysis, 30 metabolites were identified as potential biomarkers of crystal-induced renal damage. Most of them were primarily involved in amino acid metabolism, taurine and hypotaurine metabolism, purine metabolism, and the citrate cycle (TCA). After the treatment with OS, the levels of 20 biomarkers had returned to the levels of the control samples. CONCLUSIONS: Our results suggest that OS has a protective effect for mice with crystal-induced kidney injury via the regulation of multiple metabolic pathways primarily involving amino acid, energy and choline metabolism.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Rim/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Orthosiphon/química , Urina/química , Animais , Biomarcadores/metabolismo , Oxalato de Cálcio/farmacologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Etnofarmacologia/métodos , Rim/metabolismo , Nefropatias/induzido quimicamente , Masculino , Medicina Tradicional Chinesa/métodos , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA