Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0295813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38194422

RESUMO

OBJECTIVE: To explore their association with the development of diabetes retinopathy (DR), single nucleotide polymorphism (SNP) mutations were screened out by high-throughput sequencing and validated in patients diagnosed with DR. To understand the role of PIK3CA in the pathogenesis of DR and explore the relationship between PIK3CA,phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR),and DR, the effect of PIK3CA.rs17849079 mutation was investigated in a DR cell model. METHODS: Twelve patients diagnosed with DR at the Qinghai Provincial People's Hospital from September 2020 to June 2021 were randomly selected as the case group, while 12 healthy subjects of similar age and gender who underwent physical examination in Qinghai Provincial People's Hospital physical examination center during the same period were randomly selected as the control group. Blood samples (2 mL) were collected from both groups using EDTA anticoagulant blood collection vessels and frozen at -20°C for future analysis. SNP mutations were detected by high-throughput sequencing, and the shortlisted candidates were subjected by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The detected SNP candidates were verified by expanding the sample size (first validation: 56 patients in the case group and 58 controls; second validation: 157 patients in the case group and 96 controls). A lentivirus vector carrying mutated or wild-type PIK3CA.rs17849079 was constructed. ARPE-19 cells were cultured in a medium supplemented with 10% fetal bovine serum (FBS) to establish a DR cell model. PIRES2-PIK3CA-MT and PIRES2-PIK3CA-WT vectors were transfected into DR model cells, which were categorized into control, mannitol, model, empty vector, PIK3CA wild-type, and PIK3CA mutant-type groups. Cell activity was detected by the cell counting kit (CCK)-8 assay, and cellular apoptosis was evaluated by flow cytometry. Glucose concentration and levels of cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1ß were detected using enzyme-linked immunosorbent assay kits. The expression of PIK3CA, AKT1, mTOR, and VEGF genes was detected by real-time quantitative polymerase chain reaction (RT-qPCR), while the expression of PI3K, p-PI3K, AKT1, p-AKT1, mTOR, p-mTOR, and VEGF proteins was detected by western blotting. RESULTS: The mutated SNPs were mainly enriched in the PI3K/AKT pathway, calcium ion pathway, and glutamatergic synaptic and cholinergic synaptic signaling pathways. Seven SNPs, including PRKCE.rs1533476, DNAH11.rs10485983, ERAP1.rs149481, KLHL1.rs1318761, APOBEC3C.rs1969643, FYN.rs11963612, and KCTD1.rs7240205, were not related to the development of DR. PIK3CA.rs17849079 was prone to C/T mutation. The risk of DR increased with the presence of the C allele and decreased in the presence of the T allele. High glucose induced the expression of PIK3CA and VEGF mRNAs as well as the expression of PI3K, p-PI3K, p-AKT1, p-mTOR, and VEGF proteins in ARPE-19 cells, which led to secretion of inflammatory factors TNF-αand IL-1, cell apoptosis, and inhibition of cell proliferation. The PIK3CA.rs17849079 C allele accelerated the progression of DR. These biological effects were inhibited when the C allele of PIK3CA.rs17849079 was mutated to T allele. CONCLUSION: The mutated SNP sites in patients with DR were mainly enriched in PI3K/AKT, calcium ion, and glutamatergic synaptic and cholinergic synaptic signaling pathways. The rs17849079 allele of PIK3CA is prone to C/T mutation where the C allele increases the risk of DR. High glucose activates the expression of PIK3CA and promotes the phosphorylation of PI3K, which leads to the phosphorylation of AKT and mTOR. These effects consequently increase VEGF expression and accelerate the development of DR. The C to T allele mutation in PIK3CA.rs17849079 can play a protective role and reduce the risk of DR.


Assuntos
Diabetes Mellitus , Doenças Retinianas , Humanos , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Cálcio , Fator A de Crescimento do Endotélio Vascular , Classe I de Fosfatidilinositol 3-Quinases/genética , Serina-Treonina Quinases TOR/genética , Fator de Necrose Tumoral alfa , Colinérgicos , Glucose , Aminopeptidases , Antígenos de Histocompatibilidade Menor
2.
Artigo em Inglês | MEDLINE | ID: mdl-36497949

RESUMO

The physiological mechanisms and phytoremediation effects of three kinds of native quinoa in a desert mining area were studied. We used two different types of local soils (native soil and tailing soil) to analyze the changes in the heavy metal content, leaf physiology, photosynthetic parameters, stem hydraulics, and anatomical characteristics of potted quinoa. The results show that the chlorophyll content, photosynthetic rate, stomatal conductance, and transpiration rate of Kochia scoparia were decreased, but intercellular CO2 concentration (Ci) was increased under heavy metal stress, and the net photosynthetic rate (Pn) was decreased due to non-stomatal limitation. The gas exchange of Chenopodium glaucum and Atriplex centralasiatica showed a decrease in Pn, stomatal conductance (Gs), and transpiration rate (E) due to stomatal limitation. The three species showed a similar change in heavy metal content; they all showed elevated hydraulic parameters, decreased vessel density, and significantly thickened vessel walls under heavy metal stress. Physiological indicators such as proline content and activity of superoxide dismutase (SOD) and peroxidase (POD) increased, but the content of malondialdehyde (MDA) and glutathione (GSH), as well as catalase (CAT) activity, decreased in these three plants. Therefore, it can be concluded that these three species of quinoa, possibly the most dominant 30 desert plants in the region, showed a good adaptability and accumulation capacity under the pressure of heavy metal stress, and these plants can be good candidates for tailings remediation in the Jinchang desert mining area.


Assuntos
Metais Pesados , Metais Pesados/toxicidade , Fotossíntese , Superóxido Dismutase/metabolismo , Malondialdeído , Solo , Plantas/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo
3.
Ying Yong Sheng Tai Xue Bao ; 32(12): 4381-4390, 2021 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-34951279

RESUMO

The damage mechanism of salt stress on plants has attracted much attention. In order to reveal the damage mechanism of different salt stresses, we compared osmotic regulation and photosynthetic characteristics of seedlings of wheat cultivar Xianhan 3 under sodium salt (150 mmol·L-1) and calcium salt (5, 30 mmol·L-1) treatments alone or in combination. The results showed that sodium salt or calcium salt stress alone significantly inhibited the growth of roots and stems, but increased the amount of soluble sugar and proline, regulatory energy-dissipated electron yield, non-photochemical quenching and relative content of zeaxanthin contents in leaves. In contrast, salt treatments alone significantly decreased the levels of chlorophyll a and chlorophyll b, maximum photochemical efficiency, PSⅡ photochemical efficiency, photochemical quenching and photosynthetic electron transport efficiency. Furthermore, the inhibition of wheat seedling growth was more sensitive to calcium salt than to sodium salt stress, whereas the decreases of chlorophyll content and chlorophyll fluorescence parameters were more prominent in response to sodium salt stress. Except for the amount of soluble protein, lutein and the relative level of zeaxanthin, the changes of other parameters in the leaves due to sodium salt stress were effectively blocked by the application of low calcium concentration, but further increased by the presence of high calcium salt concentration. Taken together, sodium or calcium salt stress alone significantly inhibited seedling growth. The toxicity of sodium salt to wheat seedlings was effectively alleviated by low calcium concentration, but was aggravated by high calcium concentration, which were associated with the changes of photosynthetic pigment content, light energy capture, and photosynthetic electron transport process in the leaves of wheat seedlings. Moreover, osmotic regulators played an important role in enhancing the resistance of wheat seedlings to sodium or/and calcium environment.


Assuntos
Plântula , Triticum , Clorofila , Clorofila A , Fluorescência , Fotossíntese , Folhas de Planta , Estresse Salino
4.
Environ Sci Pollut Res Int ; 28(46): 65447-65461, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34319523

RESUMO

Longchun 30, a new wheat variety, was used to investigate seedling growth, element absorption, and antioxidant response under 150 mM NaCl and tea polyphenols (TP) (25 and 100 mg L-1) treatments alone or in combination, thus revealing TP-alleviating mechanism on the salt damage to plants. 150 mM NaCl stress alone inhibited the seedling growth, increased sodium content and reactive oxygen species (ROS) accumulation, but reduced potassium (K) and calcium (Ca) levels at different culture times, thus resulting in the oxidative damage to the leaves. Even though 25 or 100 mg L-1 TP treatment alone led to the significant increases of O2·- and H2O2 generation, TP-treated leaves exhibited the reduction of relative electrical conductivity and no change of malondialdehyde content. Moreover, high TP concentration alone stimulated the seedling growth. In addition, the activities and gene expression of superoxide dismutase, catalase, and peroxidase (POD) as well as diamine oxidase and polyamine oxidase were changed to different degrees due to NaCl or TP treatment alone. Further study showed that the presence of 25 or 100 mg L-1 TP promoted the growth, increased K+ and Ca2+ contents, and reduced O2·- and H2O2 accumulation in salt-stressed wheat seedlings. Taken together, salinity-inhibitory effect on the growth of wheat seedlings might be associated with salt-induced imbalance of element content and the increase of oxidative damage resulting from ROS accumulation, while the application of TP effectively alleviated salinity-inhibitory effect on the seedling growth and improved the tolerance of wheat seedlings to salt environment, which might be associated with the increases of K+ and Ca2+ contents as well as the reduction of oxidative damage in the leaves of wheat seedlings under NaCl and TP treatment in combination.


Assuntos
Antioxidantes , Plântula , Antioxidantes/metabolismo , Peróxido de Hidrogênio , Estresse Oxidativo , Folhas de Planta/metabolismo , Polifenóis/farmacologia , Estresse Salino , Plântula/metabolismo , Chá , Triticum/genética , Triticum/metabolismo
5.
Environ Sci Pollut Res Int ; 24(1): 395-404, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27726077

RESUMO

Growth inhibition and antioxidative response were investigated in wheat roots cultured in 1/4 Hoagland solution containing zinc (Zn, 500 µM), iron (Fe, 300 µM), and copper (Cu, 300 µM) in combination. Different Zn, Fe, and Cu interactions inhibited seedling growth and increased Zn, Fe, and Cu contents in roots and shoots, with the most significant inhibition due to Zn + Fe + Cu treatment. The elevation of malondialdehyde content and the loss of cell viability resulted from the increases of total and apoplastic hydrogen peroxide (H2O2) and hydroxyl radical (·OH) contents in all treated roots. Except for Zn + Fe stress, root superoxide anion (O2•-) level significantly decreased at other combined treatments. The application of 10 µM diphenylene iodonium suggested that NADPH oxidase activity was lower in Fe + Cu-treated and Zn + Fe + Cu-treated roots than in other roots. Additionally, all combined treatments inhibited superoxide dismutase (SOD) and peroxidase (POD) but stimulated total glutathione reductase (GR) activity in roots. However, in root apoplast, decreased SOD and ascorbate peroxidase activities as well as increased POD, catalase, and GR activities were caused by different Zn, Fe, and Cu interactions. In conclusion, combined Zn, Fe, and Cu stresses exhibited significant inhibition on root growth, with the strongest effect due to Zn + Fe + Cu. Here, it is also indicated that each antioxidantive enzyme including apoplastic enzymes showed specific responses and that the stimulation of some of them played an important protective mechanism against oxidative damage, when wheat roots were treated with different Zn, Fe, and Cu treatments in combination.


Assuntos
Cobre/toxicidade , Ferro/toxicidade , Triticum/efeitos dos fármacos , Zinco/toxicidade , Catalase/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
6.
J Biotechnol ; 231: 81-82, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27245144

RESUMO

Pseudarthrobacter sulfonivorans strain Ar51, a psychotrophic bacterium isolated from the Tibet permafrost of China, can degrade crude oil and multi benzene compounds efficiently in low temperature. Here we report the complete genome sequence of this bacterium. The complete genome sequence of Pseudarthrobacter sulfonivorans strain Ar51, consisting of a cycle chromosome with a size of 5.04Mbp and a cycle plasmid with a size of 12.39kbp. The availability of this genome sequence allows us to investigate the genetic basis of crude oil degradation and adaptation to growth in a nutrient-poor permafrost environment.


Assuntos
Derivados de Benzeno/metabolismo , Micrococcaceae/genética , Micrococcaceae/metabolismo , Petróleo/metabolismo , Biotecnologia , Pergelissolo/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA