Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
ACS Nano ; 18(29): 19232-19246, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38996055

RESUMO

Despite the superior efficacy of radiotherapy in esophageal squamous cell carcinoma (ESCC), radioresistance by cancer stem cells (CSCs) leads to recurrence, metastasis, and treatment failure. Therefore, it is necessary to develop CSC-based therapies to enhance radiotherapy. miR-339-5p (miR339) is involved in stem cell division and DNA damage checkpoint signaling pathways based on ESCC cohort. miR339 inhibited ESCC cell stemness and enhanced radiation-induced DNA damage by targeting USP8, suggesting that it acts as a potential CSC regulator and radiosensitizer. Considering the limited circulating periods and poor tumor-targeting ability of miRNA, a multifunctional nanoplatform based on bismuth sulfide nanoflower (Bi@PP) is developed to efficiently deliver miR339 and improve radioresistance. Intriguingly, Bi@PP encapsulates more miR339 owing to their flower-shaped structure, delivering more than 1000-fold miR339 into cells, superior to free miR339 alone. Besides being used as a carrier, Bi@PP is advantageous for dynamically monitoring the distribution of delivered miR339 in vivo while simultaneously inhibiting tumor growth. Additionally, Bi@PP/miR339 can significantly enhance radiotherapy efficacy in patient-derived xenograft models. This multifunctional platform, incorporating higher miRNA loading capacity, pH responsiveness, hypoxia relief, and CT imaging, provides another method to promote radiosensitivity and optimize ESCC treatment.


Assuntos
Bismuto , Neoplasias Esofágicas , MicroRNAs , Células-Tronco Neoplásicas , Sulfetos , Bismuto/química , Bismuto/farmacologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Sulfetos/química , Sulfetos/farmacologia , Animais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Camundongos , Tolerância a Radiação/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Camundongos Nus , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética
2.
EBioMedicine ; 105: 105177, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38924839

RESUMO

BACKGROUND: The 5-year survival rate of oesophageal squamous cell carcinoma (ESCC) is approximately 20%. The prognosis and drug response exhibit substantial heterogeneity in ESCC, impeding progress in survival outcomes. Our goal is to identify a signature for tumour subtype classification, enabling precise clinical treatments. METHODS: Utilising pre-treatment multi-omics data from an ESCC dataset (n = 310), an enhancer methylation-eRNA-target gene regulation network was constructed and validated by in vitro experiments. Four machine learning methods collectively identified core target genes, establishing an Enhancer Demethylation-Regulated Gene Score (EDRGS) model for classification. The molecular function of EDRGS subtyping was explored in scRNA-seq (n = 60) and bulk-seq (n = 310), and the EDRGS's potential to predict treatment response was assessed in datasets of various cancer types. FINDINGS: EDRGS stratified ESCCs into EDRGS-high/low subtypes, with EDRGS-high signifying a less favourable prognosis in ESCC and nine additional cancer types. EDRGS-high exhibited an immune-hot but immune-suppressive phenotype with elevated immune checkpoint expression, increased T cell infiltration, and IFNγ signalling in ESCC, suggesting a better response to immunotherapy. Notably, EDRGS outperformed PD-L1 in predicting anti-PD-1/L1 therapy effectiveness in ESCC (n = 42), kidney renal clear cell carcinoma (KIRC, n = 181), and bladder urothelial carcinoma (BLCA, n = 348) cohorts. EDRGS-low showed a cell cycle-activated phenotype with higher CDK4 and/or CDK6 expression, demonstrating a superior response to the CDK4/6 inhibitor palbociclib, validated in ESCC (n = 26), melanoma (n = 18), prostate cancer (n = 15) cells, and PDX models derived from patients with pancreatic cancer (n = 30). INTERPRETATION: Identification of EDRGS subtypes enlightens ESCC categorisation, offering clinical insights for patient management in immunotherapy (anti-PD-1/L1) and CDK4/6 inhibitor therapy across cancer types. FUNDING: This study was supported by funding from the National Key R&D Program of China (2021YFC2501000, 2020YFA0803300), the National Natural Science Foundation of China (82030089, 82188102), the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-018, 2022-I2M-2-001, 2021-I2M-1-067), the Fundamental Research Funds for the Central Universities (3332021091).


Assuntos
Biomarcadores Tumorais , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Neoplásica da Expressão Gênica , Imunoterapia , Humanos , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Imunoterapia/métodos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/metabolismo , Prognóstico , Metilação de DNA , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Biologia Computacional/métodos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Redes Reguladoras de Genes , Animais
3.
Adv Healthc Mater ; 13(16): e2400381, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38467587

RESUMO

Cancer stem cells (CSCs) are essential for tumor initiation, recurrence, metastasis, and resistance. However, targeting CSCs as a therapeutic approach remains challenging. Here, a stemness signature based on 22-gene is developed to predict prognosis in esophageal squamous cell carcinoma (ESCC). Staurosporine (STS) is identified as a radioresistance suppressor by high-throughput screening of a library of 2131 natural compounds, leading to dramatically improved radiotherapy efficacy in subcutaneous tumor models. Mechanistically, STS inhibits cell proliferation through the mTOR/AKT signaling pathway and suppressed stemness by targeting ATP-binding cassette A1 (ABCA1), which is transcriptionally regulated by liver X receptor alpha (LXRα). STS can selectively bind to the nucleotide-binding domain (NBD) of ABCA1 and compete for ATP, blocking ABCA1-mediated drug efflux and facilitating intracellular accumulation of STS. Considering the cytotoxicity of STS, an extracellular vesicle-encapsulated STS system (EV-STS) is established for effective STS delivery. EV-STS shows remarkable tumor growth inhibition, even at half the dose of STS, with superior safety and efficacy. These findings indicate that ABCA1 may serve as a predictor of response to neoadjuvant chemotherapy and/or radiotherapy in ESCC patients. EV-STS has shown improved antitumor efficacy and low systemic toxicity, offering a promising therapeutic approach for ESCC.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Vesículas Extracelulares , Tolerância a Radiação , Estaurosporina , Humanos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Estaurosporina/farmacologia , Estaurosporina/análogos & derivados , Animais , Vesículas Extracelulares/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/terapia , Camundongos Nus , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Camundongos Endogâmicos BALB C
4.
Adv Mater ; 36(23): e2311291, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408154

RESUMO

Radiotherapy, a widely used therapeutic strategy for esophageal squamous cell carcinoma (ESCC), is always limited by radioresistance of tumor tissues and side-effects on normal tissues. Herein, a signature based on four core genes of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, is developed to predict prognosis and assess immune cell infiltration, indicating that the cGAS-STING pathway and radiotherapy efficacy are closely intertwined in ESCC. A novel lipid-modified manganese diselenide nanoparticle (MnSe2-lipid) with extraordinarily uniform sphere morphology and tumor microenvironment (TME) responsiveness is developed to simultaneously overcome radioresistance and reduce side-effects of radiation. The uniform MnSe2 encapsulated lipid effectively achieves tumor accumulation. Octadecyl gallate on surface of MnSe2 forming pH-responsive metal-phenolic covalent realizes rapid degradation in TME. The released Mn2+ promotes radiosensitivity by generating reactive oxygen species induced by Fenton-like reaction and activating cGAS-STING pathway. Spontaneously, selenium strengthens immune response by promoting secretion of cytokines and increasing white blood cells, and performs antioxidant activity to reduce side-effects of radiotherapy. Overall, this multifunctional remedy which is responsive to TME is capable of providing radiosensitivity by cGAS-STING pathway-mediated immunostimulation and chemodynamic therapy, and radioprotection of normal tissues, is highlighted here to optimize ESCC treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Nanopartículas , Tolerância a Radiação , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Animais , Nanopartículas/química , Linhagem Celular Tumoral , Camundongos , Ácido Gálico/química , Ácido Gálico/farmacologia , Ácido Gálico/análogos & derivados , Lipídeos/química , Selênio/química , Selênio/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Protetores contra Radiação/farmacologia , Protetores contra Radiação/química , Manganês/química , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia
5.
Cancer Lett ; 587: 216731, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369005

RESUMO

Therapy resistance and metastatic progression jointly determine the fatal outcome of cancer, therefore, elucidating their crosstalk may provide new opportunities to improve therapeutic efficacy and prevent recurrence and metastasis in esophageal squamous cell carcinoma (ESCC). Here, we have established radioresistant ESCC cells with the remarkable metastatic capacity, and identified miR-494-3p (miR494) as a radioresistant activator. Mechanistically, we demonstrated that cullin 3 (CUL3) is a direct target of miR494, which is transcriptionally regulated by JunD, and highlighted that JunD-miR494-CUL3 axis promotes radioresistance and metastasis by facilitating epithelial-mesenchymal transition (EMT) and restraining programmed cell death 1 ligand 1 (PD-L1) degradation. In clinical specimens, miR494 is significantly up-regulated and positively associated with T stage and lymph node metastasis in ESCC tissues and serum. Notably, patients with higher serum miR494 expression have poor prognosis, and patients with higher CUL3 expression have more conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs), less cancer-associated fibroblasts (CAF2/4), and tumor endothelial cells (TEC2/3) infiltration than patients with lower CUL3 expression, suggesting that CUL3 may be involved in tumor microenvironment (TME). Overall, miR494 may serve as a potential prognostic predictor and therapeutic target, providing a promising strategy for ESCC treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Células Endoteliais/metabolismo , Prognóstico , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Microambiente Tumoral , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Culina/genética
6.
Oncogene ; 43(6): 420-433, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092960

RESUMO

Dysregulated expression of long-stranded non-coding RNAs is strongly associated with carcinogenesis. However, the precise mechanisms underlying their involvement in ovarian cancer pathogenesis remain poorly defined. Here, we found that lncRNA RUNX1-IT1 plays a crucial role in the progression of ovarian cancer. Patients with high RUNX1-IT1 expression had shorter survival and poorer outcomes. Notably, knockdown of RUNX1-IT1 suppressed the proliferation, migration and invasion of ovarian cancer cells in vitro, and reduced the formation of peritoneum metastasis in vivo. Mechanistically, RUNX1-IT1 bound to HDAC1, the core component of the NuRD complex, and STAT1, acting as a molecular scaffold of the STAT1 and NuRD complex to regulate intracellular reactive oxygen homeostasis by altering the histone modification status of downstream targets including GPX1. Consequently, RUNX1-IT1 activated NF-κB signaling and altered the biology of ovarian cancer cells. In conclusion, our findings demonstrate that RUNX1-IT1 promotes ovarian malignancy and suggest that targeting RUNX1-IT1 represents a promising therapeutic strategy for ovarian cancer treatment.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Histona Desacetilases/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
7.
Cancers (Basel) ; 15(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38136265

RESUMO

Esophageal squamous cell carcinoma (ESCC) is an aggressive epithelial malignancy with poor prognosis. Interestingly, ESCC is strongly characterized by a male-predominant propensity. Our previous study showed that androgen receptor (AR) orchestrated a transcriptional repression program to promote ESCC growth, but it remains unclear whether AR can also activate oncogenic signaling during ESCC progression. In this study, by analyzing our previous AR cistromes and androgen-regulated transcriptomes, we identified uridine diphosphate glucuronosyltransferase family 2 member B15 (UGT2B15) as a bona fide target gene of AR. Mechanistically, AP-1 cofactors played important and collaborative roles in AR-mediated UGT2B15 upregulation. Functional studies have revealed that UGT2B15 promoted invasiveness in vitro and lymph node metastasis in vivo. UGT2B15 was partially responsible for the AR-induced invasive phenotype in ESCC cells. Importantly, simultaneous blocking of AP-1 and AR resulted in stronger inhibition of cell invasiveness compared to inhibiting AP-1 or AR alone. In conclusion, our study reveals the molecular mechanisms underlying the AR-driven ESCC invasion and suggests that the AR/AP1/UGT2B15 transcriptional axis can be potentially targeted in suppressing metastasis in male ESCC patients.

8.
Cell Death Dis ; 14(6): 384, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385990

RESUMO

The widespread application of antiandrogen therapies has aroused a significant increase in the incidence of NEPC, a lethal form of the disease lacking efficient clinical treatments. Here we identified a cell surface receptor neurokinin-1 (NK1R) as a clinically relevant driver of treatment-related NEPC (tNEPC). NK1R expression increased in prostate cancer patients, particularly higher in metastatic prostate cancer and treatment-related NEPC, implying a relation with the progression from primary luminal adenocarcinoma toward NEPC. High NK1R level was clinically correlated with accelerated tumor recurrence and poor survival. Mechanical studies identified a regulatory element in the NK1R gene transcription ending region that was recognized by AR. AR inhibition enhanced the expression of NK1R, which mediated the PKCα-AURKA/N-Myc pathway in prostate cancer cells. Functional assays demonstrated that activation of NK1R promoted the NE transdifferentiation, cell proliferation, invasion, and enzalutamide resistance in prostate cancer cells. Targeting NK1R abrogated the NE transdifferentiation process and tumorigenicity in vitro and in vivo. These findings collectively characterized the role of NK1R in tNEPC progression and suggested NK1R as a potential therapeutic target.


Assuntos
Neoplasias da Próstata , Receptores da Neurocinina-1 , Masculino , Humanos , Receptores da Neurocinina-1/genética , Aurora Quinase A , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Quinase C-alfa , Transdução de Sinais , Recidiva Local de Neoplasia , Neoplasias da Próstata/genética
9.
Artif Intell Med ; 142: 102585, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316099

RESUMO

BACKGROUND: Artificial intelligence (AI) technology has clustered patients based on clinical features into sub-clusters to stratify high-risk and low-risk groups to predict outcomes in lung cancer after radiotherapy and has gained much more attention in recent years. Given that the conclusions vary considerably, this meta-analysis was conducted to investigate the combined predictive effect of AI models on lung cancer. METHODS: This study was performed according to PRISMA guidelines. PubMed, ISI Web of Science, and Embase databases were searched for relevant literature. Outcomes, including overall survival (OS), disease-free survival (DFS), progression-free survival (PFS), and local control (LC), were predicted using AI models in patients with lung cancer after radiotherapy, and were used to calculate the pooled effect. Quality, heterogeneity, and publication bias of the included studies were also evaluated. RESULTS: Eighteen articles with 4719 patients were eligible for this meta-analysis. The combined hazard ratios (HRs) of the included studies for OS, LC, PFS, and DFS of lung cancer patients were 2.55 (95 % confidence interval (CI) = 1.73-3.76), 2.45 (95 % CI = 0.78-7.64), 3.84 (95 % CI = 2.20-6.68), and 2.66 (95 % CI = 0.96-7.34), respectively. The combined area under the receiver operating characteristics curve (AUC) of the included articles on OS and LC in patients with lung cancer was 0.75 (95 % CI = 0.67-0.84), and 0.80 (95%CI = 0.0.68-0.95), respectively. CONCLUSION: The clinical feasibility of predicting outcomes using AI models after radiotherapy in patients with lung cancer was demonstrated. Large-scale, prospective, multicenter studies should be conducted to more accurately predict the outcomes in patients with lung cancer.


Assuntos
Inteligência Artificial , Neoplasias Pulmonares , Humanos , Estudos Prospectivos , Neoplasias Pulmonares/radioterapia , Bases de Dados Factuais , PubMed
10.
J Clin Med ; 11(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36233412

RESUMO

OBJECTIVES: The objectives of this study were to identify global trends in research on cell-free deoxyribonucleic acid (cfDNA) from a bibliometric perspective and provide researchers with new research hotspots. METHODS: In all, we extracted 5038 pieces of literature from PubMed and 527 articles from the Web of Science Core Collection (WoSCC) database related to cfDNA published from 1 January 2017 to 31 December 2021. For PubMed literature, we employed co-word, biclustering, and strategic diagram analysis to describe the trends in research on cfDNA in the said five years. Then, we used VOSviewer analysis for the WoSCC database to display the trends in research on cfDNA in obstetrics and gynecology during 2017-2021. RESULTS: Strategy diagram analysis of 95 major Medical Subject Headings terms extracted from 5038 pieces of literature indicated that cfDNA sequence analysis for non-invasive prenatal and genetic testing and its application in the fields of neoplasm genetics and diagnosis is a newly emerging immature theme of cfDNA. VOSviewer analysis of 527 articles showed the global trends in research on cfDNA in obstetrics and gynecology, for example, in terms of most influential authors, institutions, countries, journals, and five research hotspots: (1) cfDNA application in prenatal screening and prenatal diagnosis, (2) cfDNA application in assisted reproductive technology, (3) cfDNA application in pre-eclampsia, DNA methylation, etc., (4) cfDNA application in placental dysfunction and fetal growth restriction, and (5) cfDNA application in fetal chromosomal abnormalities (fetal aneuploidy). CONCLUSIONS: Comprehensive visual analysis provides information regarding authors, organizations, countries/regions, journals, research hotspots, and emerging topics in the field of cfDNA for obstetrics and gynecology research. This comprehensive study could make it easier to find a partner for project development and build a network of knowledge on this emerging topic.

11.
NPJ Genom Med ; 7(1): 34, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654793

RESUMO

The 3' untranslated region (3'-UTR) is the vital element regulating gene expression, but most studies have focused on variations in RNA-binding proteins (RBPs), miRNAs, alternative polyadenylation (APA) and RNA modifications. To explore the posttranscriptional function of 3'-UTR somatic mutations in tumorigenesis, we collected whole-genome data from 2413 patients across 18 cancer types. Our updated algorithm, PIVar, revealed 25,216 3'-UTR posttranscriptional impairment-related SNVs (3'-UTR piSNVs) spanning 2930 genes; 24 related RBPs were significantly enriched. The somatic 3'-UTR piSNV ratio was markedly increased across all 18 cancer types, which was associated with worse survival for four cancer types. Several cancer-related genes appeared to facilitate tumorigenesis at the protein and posttranscriptional regulation levels, whereas some 3'-UTR piSNV-affected genes functioned mainly via posttranscriptional mechanisms. Moreover, we assessed immune cell and checkpoint characteristics between the high/low 3'-UTR piSNV ratio groups and predicted 80 compounds associated with the 3'-UTR piSNV-affected gene expression signature. In summary, our study revealed the prevalence and clinical relevance of 3'-UTR piSNVs in cancers, and also demonstrates that in addition to affecting miRNAs, 3'-UTR piSNVs perturb RBPs binding, APA and m6A RNA modification, which emphasized the importance of considering 3'-UTR piSNVs in cancer biology.

12.
Front Endocrinol (Lausanne) ; 13: 1061766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686483

RESUMO

Implantation is the first step in human reproduction. Successful implantation depends on the crosstalk between embryo and endometrium. Recurrent implantation failure (RIF) is a clinical phenomenon characterized by a lack of implantation after the transfer of several embryos and disturbs approximately 10% couples undergoing in vitro fertilization and embryo transfer. Despite increasing literature on RIF, there is still no widely accepted definition or standard protocol for the diagnosis and treatment of RIF. Progress in predicting and preventing RIF has been hampered by a lack of widely accepted definitions. Most couples with RIF can become pregnant after clinical intervention. The prognosis for couples with RIF is related to maternal age. RIF can be caused by immunology, thrombophilias, endometrial receptivity, microbiome, anatomical abnormalities, male factors, and embryo aneuploidy. It is important to determine the most possible etiologies, and individualized treatment aimed at the primary cause seems to be an effective method for increasing the implantation rate. Couples with RIF require psychological support and appropriate clinical intervention. Further studies are required to evaluate diagnostic method and he effectiveness of each therapy, and guide clinical treatment.


Assuntos
Implantação do Embrião , Transferência Embrionária , Gravidez , Feminino , Masculino , Humanos , Transferência Embrionária/métodos , Fertilização in vitro/métodos , Endométrio , Causalidade
13.
J Cell Mol Med ; 26(6): 1826-1841, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33738906

RESUMO

Pre-eclampsia (PE) is a worldwide pregnancy-related disorder. It is mainly characterized by defect migration and invasion of trophoblast cells. Recently, circular RNAs (circRNAs) have been believed to play a vital role in PE. The expression patterns and the biological functions of circRNAs in PE remain elusive. Here, we performed a circRNA microarray to identify putative PE-related circRNAs. Bioinformatics analyses were used to screen the circRNAs which have potential relationships with pre-eclampsia, and we identified a novel circRNA (circVRK1) that was up-regulated in PE placenta tissues. By using HTR-8/SVneo cells, circVRK1 knockdown significantly enhanced cell migration and invasion abilities, as well as epithelial-mesenchymal transition (EMT). Mechanistically, we found that circVRK1 and PTEN could function as the ceRNAs to miR-221-3p. Overexpression of miR-221-3p promoted cell migration, invasion and EMT via regulating PTEN. The cotransfection of miR-221-3p inhibitor or PTEN reversed the effect from circVRK1 knockdown. Moreover, the circVRK1/miR-221-3p/PTEN axis greatly regulated Akt phosphorylation. In general, circVRK1 suppresses trophoblast cell migration, invasion and EMT, by acting as a ceRNA to miR-221-3p to regulate PTEN, and further inhibit PI3K/Akt activation. The purpose of this paper is to open wide insights to investigate the onset of PE and provide new potential therapeutic targets in PE.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , MicroRNAs/genética , MicroRNAs/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Circular/genética
14.
Front Oncol ; 11: 812785, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047414

RESUMO

Pancreatic cancer is a highly malignant tumor with a poor survival prognosis. We attempted to establish a robust prognostic model to elucidate the clinicopathological association between lncRNA, which may lead to poor prognosis by influencing m6A modification, and pancreatic cancer. We investigated the lncRNAs expression level and the prognostic value in 440 PDAC patients and 171 normal tissues from GTEx, TCGA, and ICGC databases. The bioinformatic analysis and statistical analysis were used to illustrate the relationship. We implemented Pearson correlation analysis to explore the m6A-related lncRNAs, univariate Cox regression and Kaplan-Meier methods were performed to identify the seven prognostic lncRNAs signatures. We inputted them in the LASSO Cox regression to establish a prognostic model in the TCGA database, verified in the ICGC database. The AUC of the ROC curve of the training set is 0.887, while the validation set is 0.711. Each patient has calculated a risk score and divided it into low-risk and high-risk subgroups by the median value. Moreover, the model showed a robust prognostic ability in the stratification analysis of different risk subgroups, pathological grades, and recurrence events. We established a ceRNA network between lncRNAs and m6A regulators. Enrichment analysis indicated that malignancy-associated biological function and signaling pathways were enriched in the high-risk subgroup and m6A-related lncRNAs target mRNA. We have even identified small molecule drugs, such as Thapsigargin, Mepacrine, and Ellipticine, that may affect pancreatic cancer progression. We found that seven lncRNAs were highly expressed in tumor patients in the GTEx-TCGA database, and LncRNA CASC19/UCA1/LINC01094/LINC02323 were confirmed in both pancreatic cell lines and FISH relative quantity. We provided a comprehensive aerial view between m6A-related lncRNAs and pancreatic cancer's clinicopathological characteristics, and performed experiments to verify the robustness of the prognostic model.

15.
Int Immunopharmacol ; 89(Pt B): 107096, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33091818

RESUMO

BACKGROUND: Toll-like receptor (TLR) signals play vital roles during the blood-stage of malaria infections. However, the roles of TLR agonists in the regulation of immune responses and the development of protective immunity to malaria remain poorly understood. METHOD: BALB/c mice were pre-treated with TLR4, TLR7 and TLR9 agonists, followed by infection with Plasmodium chabaudi. After infection, splenic dendritic cells (DCs), Th1 cells and programmed death-1 (PD-1) expressed on Th1 cells, as well as regulatory T cells (Tregs) were analyzed by flow cytometry. The levels of IFN-γ, TNF-α, TGF-ß and IL-10 in splenocytes and IgG1 and IgG2a in serum were measured by ELISA. RESULT: Administration of TLR4, TLR7 and TLR9 agonists prior to infection improved disease outcomes. All TLR agonists promoted DC activation, and the proportions of Th1 cells increased. In TLR4, TLR7 and TLR9 agonist treated groups the levels of pro-inflammatory cytokines IFN-γ and TNF-α were elevated, and IgG1 and IgG2a serum levels were also significantly increased. TLR4, TLR7 and TLR9 agonists diminished the activation of Tregs and down-regulated the anti-inflammatory cytokines TGF-ß and IL-10. Finally, PD-1 expressed on Th1 cells were decreased in TLR4, TLR7 and TLR9 agonist treated groups compared with control groups. CONCLUSION: TLR4, TLR7 and TLR9 agonists activated DC-mediated innate immune responses and adaptive immune response, which against the blood-stage of Plasmodium and might be applied to malaria protection and treatment.


Assuntos
Malária/imunologia , Malária/prevenção & controle , Glicoproteínas de Membrana/agonistas , Plasmodium chabaudi/efeitos dos fármacos , Plasmodium chabaudi/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas , Imunidade Adaptativa/efeitos dos fármacos , Animais , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Imunidade Inata/efeitos dos fármacos , Imunoglobulina G/sangue , Imunoglobulina G/efeitos dos fármacos , Interferon gama/metabolismo , Interleucina-10/metabolismo , Estágios do Ciclo de Vida , Camundongos Endogâmicos BALB C , Parasitemia/prevenção & controle , Receptor de Morte Celular Programada 1/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th1/metabolismo , Fator de Crescimento Transformador beta/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
16.
Dis Markers ; 2020: 6723487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32300378

RESUMO

PURPOSE: Long noncoding RNAs (lncRNAs) have been widely studied, and single nucleotide polymorphisms (SNPs) in lncRNAs are considered to be genetic factors that influence cancer susceptibility. The lncRNA GAS5, MEG3, and PCAT-1 polymorphisms are shown to be possibly associated with cancer risk. The aim of this meta-analysis was to systematically evaluate this association. METHODS: Studies were selected from PubMed, Web of Science, Embase, Google Scholar, Cochrane Library, the Chinese National Knowledge Infrastructure (CNKI), and the Chinese Biomedical Literature Database (CBM) through inclusion and exclusion criteria. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using the random-effects model or fixed-effects model to assess the association between lncRNA polymorphisms and cancer susceptibility. Metaregression and publication bias analyses were also conducted. All analyses were performed using the Stata 12.0 software. RESULTS: Sixteen articles (covering 13750 cases and 17194 controls) were included in this meta-analysis. A significant association between SNP rs145204276 and gastric cancer risk was observed (del vs. ins: OR = 0.79, 95%CI = 0.72-0.86; del/del vs. ins/ins+del/ins: OR = 0.74, 95%CI = 0.59-0.91; del/ins vs. ins/ins: OR = 0.84, 95%CI = 0.67-1.05). For rs16901904, a decreased cancer risk was observed in three genetic models (C vs. T: OR = 0.79, 95%CI = 0.70-0.90; CC vs. CT+TT: OR = 0.49, 95%CI = 0.37-0.65; CC vs. TT: OR = 0.49, 95%CI = 0.37-0.66). No statistical significance was found in the metaregression analysis. For all of the included SNPs, no publication bias was found in all genotype models. CONCLUSIONS: The rs145204276 SNP in lncRNA GAS5 is likely to be associated with gastric cancer risk, whereas the rs16901904 SNP in lncRNA PCAT-1 bears association with a decreased cancer risk.


Assuntos
Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Humanos
17.
Front Cell Dev Biol ; 8: 242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322582

RESUMO

Recent studies have shown that structuralized long non-coding RNAs (lncRNAs) play important roles in genetic and epigenetic processes. The spatial structures of most lncRNAs can be altered by distinct in vivo and in vitro cellular environments, as well as by DNA structural variations, such as single-nucleotide polymorphisms (SNPs) and variants (SNVs). In the present study, we extended candidate SNPs that had linkage disequilibria with those significantly associated with lung diseases in genome-wide association studies in order to investigate potential disease mechanisms originating from SNP structural changes of host lncRNAs. Following accurate alignments, we recognized 115 ternary-relationship pairs among 41 SNPs, 10 lncRNA transcripts, and 1 type of lung disease (adenocarcinoma of the lung). Then, we evaluated the structural heterogeneity induced by SNP alleles by developing a local-RNA-structure alignment algorithm and employing randomized strategies to determine the significance of structural variation. We identified four ternary-relationship pairs that were significantly associated with SNP-induced lncRNA allosteric effects. Moreover, these conformational changes disrupted the interactive regions and binding affinities of lncRNA-HCG23 and TF-E2F6, suggesting that these may represent regulatory mechanisms in lung diseases. Taken together, our findings support that SNP-induced changes in lncRNA conformations regulate many biological processes, providing novel insight into the role of the lncRNA "structurome" in human diseases.

18.
Brief Bioinform ; 21(3): 762-776, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30868167

RESUMO

The spatial position and interaction of drugs and their targets is the most important characteristics for understanding a drug's pharmacological effect, and it could help both in finding new and more precise treatment targets for diseases and in exploring the targeting effects of the new drugs. In this work, we develop a computational pipeline to confirm the spatial interaction relationship of the drugs and their targets and compare the drugs' efficacies based on the interaction centers. First, we produce a 100-sample set to reconstruct a stable docking model of the confirmed drug-target pairs. Second, we set 5.5 Å as the maximum distance threshold for the drug-amino acid residue atom interaction and construct 3-dimensional interaction surface models. Third, by calculating the spatial position of the 3-dimensional interaction surface center, we develop a comparison strategy for estimating the efficacy of different drug-target pairs. For the 1199 drug-target interactions of the 649 drugs and 355 targets, the drugs that have similar interaction center positions tend to have similar efficacies in disease treatment, especially in the analysis of the 37 targeted relationships between the 15 known anti-cancer drugs and 10 target molecules. Furthermore, the analysis of the unpaired anti-cancer drug and target molecules suggests that there is a potential application for discovering new drug actions using the sampling molecular docking and analyzing method. The comparison of the drug-target interaction center spatial position method better reflect the drug-target interaction situations and could support the discovery of new efficacies among the known anti-cancer drugs.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Antineoplásicos/química , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular
19.
Microb Cell Fact ; 17(1): 87, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29879990

RESUMO

BACKGROUND: Cephalosporin C (CPC) produced by Acremonium chrysogenum is one of the most important drugs for treatment of bacterial infectious diseases. As the major stimulant, methionine is widely used in the industrial production of CPC. In this study, we found methionine stimulated CPC production through enhancing the accumulation of endogenous S-adenosylmethionine (SAM). To overcome the methionine dependent stimulation of CPC production, the methionine cycle of A. chrysogenum was reconstructed by metabolic engineering. RESULTS: Three engineered strains were obtained by overexpressing the SAM synthetase gene AcsamS and the cystathionine-γ-lyase gene mecB, and disrupting a SAM dependent methyltransferase gene Acppm1, respectively. Overexpression of AcsamS resulted in fourfold increase of CPC production which reached to 129.7 µg/mL. Disruption of Acppm1 also increased CPC production (up to 135.5 µg/mL) through enhancing the accumulation of intracellular SAM. Finally, an optimum recombinant strain (Acppm1DM-mecBOE) was constructed through overexpressing mecB in the Acppm1 disruption mutant. In this strain, CPC production reached to the maximum value (142.7 µg/mL) which was 5.5-fold of the wild-type level and its improvement was totally independent of methionine stimulation. CONCLUSIONS: In this study, we constructed a recombinant strain in which the improvement of CPC production was totally independent of methionine stimulation. This work provides an economic route for improving CPC production in A. chrysogenum through metabolic engineering.


Assuntos
Acremonium/patogenicidade , Cefalosporinas/metabolismo , Engenharia Metabólica/métodos , Metionina/metabolismo
20.
Biochem Cell Biol ; 96(5): 636-645, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29671340

RESUMO

Indirubin and isatin have been used in the treatment of inflammatory diseases due to their anti-inflammatory properties. This study aimed to evaluate the combined effect of indirubin and isatin on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). UC was induced by the administration of 3% (w/v) DSS solution, and then the model mice were administered indirubin (10 mg/kg body mass) and (or) isatin (10 mg/kg body mass) by gavage once daily for 7 days. The results showed that indirubin and isatin, individually or combined, significantly inhibited weight loss, lowered disease activity index (DAI), ameliorated pathological changes, decreased the levels of pro-inflammatory mediators and myeloperoxidase (MPO) activity, increased the expression of anti-inflammatory cytokines and Foxp3, suppressed CD4+ T cell infiltration, and inhibited oxidative stress and epithelial cell apoptosis. Additionally, indirubin and isatin, both individually and combined, can also inhibit activation of the NF-κB and MAPK pathways induced by DSS. The protective effect of combination therapy against UC was superior to that of single-agent treatment. These results suggest that indirubin combined with isatin attenuates DSS-induced UC, and changes to the NF-κB and MAPK signaling pathways may mediate the protective effects of indirubin and isatin in UC.


Assuntos
Linfócitos T CD4-Positivos , Colite Ulcerativa , Sulfato de Dextrana/toxicidade , Isatina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Relação Dose-Resposta a Droga , Células Epiteliais/imunologia , Células Epiteliais/patologia , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA