Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Cancer Res ; 12(1): 46-64, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36760376

RESUMO

Background: Hepatocellular carcinoma (HCC) is a common malignancy. Ferroptosis and cuproptosis promote HCC spread and proliferation. While fewer studies have combined ferroptosis and cuproptosis to construct prognostic signature of HCC. This work attempts to establish a novel scoring system for predicting HCC prognosis, immunotherapy, and medication sensitivity based on ferroptosis-related genes (FRGs) and cuproptosis-related genes (CRGs). Methods: FerrDb and previous literature were used to identify FRGs. CRGs came from original research. The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases included the HCC transcriptional profile and clinical information [survival time, survival status, age, gender, Tumor Node Metastasis (TNM) stage, etc.]. Correlation, Cox, and least absolute shrinkage and selection operator (LASSO) regression analyses were used to narrow down prognostic genes and develop an HCC risk model. Using "caret", R separated TCGA-HCC samples into a training risk set and an internal test risk set. As external validation, we used ICGC samples. We employed Kaplan-Meier analysis and receiver operating characteristic (ROC) curve to evaluate the model's clinical efficacy. CIBERSORT and TIMER measured immunocytic infiltration in high- and low-risk populations. Results: TXNRD1 [hazard ratio (HR) =1.477, P<0.001], FTL (HR =1.373, P=0.001), GPX4 (HR =1.650, P=0.004), PRDX1 (HR =1.576, P=0.002), VDAC2 (HR =1.728, P=0.008), OTUB1 (HR =1.826, P=0.002), NRAS (HR =1.596, P=0.005), SLC38A1 (HR =1.290, P=0.002), and SLC1A5 (HR =1.306, P<0.001) were distinguished to build predictive model. In both the model cohort (P<0.001) and the validation cohort (P<0.05), low-risk patients had superior overall survival (OS). The areas under the curve (AUCs) of the ROC curves in the training cohort (1-, 3-, and 5-year AUCs: 0.751, 0.727, and 0.743), internal validation cohort (1-, 3-, and 5-year AUCs: 0.826, 0.624, and 0.589), and ICGC cohort (1-, 3-, and 5-year AUCs: 0.699, 0.702, and 0.568) were calculated. Infiltration of immune cells and immunological checkpoints were also connected with our signature. Treatments with BI.2536, Epothilone.B, Gemcitabine, Mitomycin.C, Obatoclax. Mesylate, and Sunitinib may profit high-risk patients. Conclusions: We analyzed FRGs and CRGs profiles in HCC and established a unique risk model for treatment and prognosis. Our data highlight FRGs and CRGs in clinical practice and suggest ferroptosis and cuproptosis may be therapeutic targets for HCC patients. To validate the model's clinical efficacy, more HCC cases and prospective clinical assessments are needed.

2.
Transl Cancer Res ; 12(12): 3327-3345, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38192999

RESUMO

Background: Ferroptosis and cuproptosis play a crucial role in the progression and dissemination of hepatocellular carcinoma (HCC). The primary objective of this study was to develop a unique scoring system for predicting the prognosis and immunological landscape of HCC based on ferroptosis-related genes (FRGs) and cuproptosis-related genes (CRGs). Methods: As the training cohort, we assembled a novel HCC cohort by merging gene expression data and clinical data from The Cancer Genome Atlas (TCGA) database, and Gene Expression Omnibus (GEO) database. The validation cohort consisted of 230 HCC cases taken from the International Cancer Genome Consortium (ICGC) database. Multiple genomic characteristics, such as tumor mutation burden (TMB), and copy number variations were analyzed concurrently. On the basis of the expression of CRGs and FRGs, patients were classified into cuproptosis and ferroptosis subtypes. Then, we constructed a risk model using least absolute shrinkage and selection operator (LASSO) analysis and Cox regression analysis based on ferroptosis and cuproptosis-related differentially expressed genes (DEGs). Patients were separated into two groups according to median risk score. We compared the immunophenotype, tumor microenvironment (TME), cancer stem cell index, and treatment sensitivity of two groups. Results: Three subtypes of ferroptosis and two subtypes of cuproptosis were identified among the patients. A greater likelihood of survival (P<0.05) was expected for patients in FRGcluster B and CRGcluster B. After that, a confirmed risk signature for ferroptosis and cuproptosis was developed and tested. Patients in the low-risk group had significantly higher survival rates than those in the high-risk group, according to our study (P<0.001). There was also a strong correlation between the signature and other variables including immunophenoscore, TMB, cancer stem cell index, immunological checkpoint genes, and sensitivity to chemotherapeutics. Conclusions: Through this comprehensive research, we identified a unique risk signature associated with HCC patients' treatment status and prognosis. Our findings highlight FRGs' and CRGs' significance in clinical practice and imply ferroptosis and cuproptosis may be therapeutic targets for HCC patients.

3.
Int J Ophthalmol ; 10(4): 560-566, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28503428

RESUMO

AIM: To develop a new method to produce recombinant reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, in soluble format with low cost for the generation of induced pluripotent stem cells (iPSCs). METHODS: A short polypeptide sequence derived from the HIV trans-activator of transcription protein (TAT) and the nucleus localization signal (NLS) polypeptide were fused to the N terminus of the reprogramming proteins and they were constructed into pCold-SUMO vector which can extremely improve the solubility of recombinant proteins. Then these vector plasmids were transformed into E. coli BL21 (DE3) Chaperone competent cells for amplification. The solubility of these recombinant proteins was determined by SDS-PAGE and Coomassie brilliant blue staining. The recombinant proteins were purified by Ni-NTA resin and identified by Western blot. The transduction of these proteins into HEK 293T cells were evaluated by immunofluorescence staining. RESULTS: These four reprogramming proteins could be produced in soluble format in pCold-SUMO expression vector system with the assistance of chaperone proteins in bacteria. The proteins were purified successfully with a purity of over 70% with a relative high transduction rate into 293 cells. CONCLUSION: The results in the present study indicate the four important reprogramming proteins, cMyc, Klf4, Oct4, and Sox2, can be produced in soluble format in bacteria with low cost. Our new method thus might be expected to greatly contribute to the future study of iPSCs.

4.
Mol Vis ; 18: 151-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22275806

RESUMO

OBJECTIVE: To evaluate the antioxidative and anticataractogenic potential effect of ursodeoxycholic acid (UDCA) on selenite-induced cataract in vitro and in vivo. METHODS: Enucleated rat lenses were incubated in M199 medium alone (Group I), with 200 µM selenite (Group II), or with 200 µM selenite and 500 µM UDCA (Group III). Selenite was administered on the third day and UDCA treatment was from the second to the fifth day. The development of cataracts was observed under an inverted microscope. Total antioxidative capabilities (T-AOC), mean activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (Gpx), glutathione reductase (GR) and glutathione S-transferase (GST), levels of reduced glutathione (GSH), malondialdehyde (MDA), and total sulfhydryl content were analyzed in lenticular samples. In vivo, cataracts were induced in 12-day-old pups by single subcutaneous injections of sodium selenite. The test groups received 180 mg/kg bodyweight/day of UDCA intraperitoneally on postpartum days 11-16 or 0.5% UDCA drops four times daily on postpartum days 11-25. RESULTS: In vitro, morphological examination of the lenses revealed dense vacuolization and opacification in Group II, minimal vacuolization in 12.5% of Group III, and no opacification in 87.5% of Group III. In Group I, all lenses were clear. UDCA significantly (p<0.05) restored GSH and total sulfhydryl, and decreased MDA levels. T-AOC and the mean activities of the antioxidant enzymes were elevated following treatment with UDCA. In vivo, 0.5% UDCA drops resulted in only 20% nuclear cataract development and 180 mg/kg of UDCA intraperitoneally led to 50% development, compared to 100% in the control group (p<0.05). CONCLUSIONS: UDCA prevents selenite toxicity and cataractogenesis by maintaining antioxidant status and GSH, protecting the sulfhydryl group, and inhibiting lipid peroxidation in lenses.


Assuntos
Catarata/induzido quimicamente , Catarata/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Selenito de Sódio/toxicidade , Ácido Ursodesoxicólico/farmacologia , Animais , Antioxidantes/metabolismo , Catarata/enzimologia , Catarata/patologia , Glutationa/metabolismo , Cristalino/efeitos dos fármacos , Cristalino/enzimologia , Cristalino/patologia , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA