Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 134023, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492393

RESUMO

Chronic exposure to high fluoride (F-) levels in groundwater causes community fluorosis and non-carcinogenic health concerns in local people. This study described occurrence, dental fluorosis, and origin of high F-groundwater using δ2H and δ18O isotopes at semiarid Gilgit, Pakistan. Therefore, groundwater (n = 85) was collected and analyzed for F- concentrations using ion-chromatography. The lowest F- concentration was 0.4 mg/L and the highest 6.8 mg/L. F- enrichment is linked with higher pH, NaHCO3, NaCl, δ18O, Na+, HCO3-, and depleted Ca+2 aquifers. The depleted δ2H and δ18O values indicated precipitation and higher values represented the evaporation effect. Thermodynamic considerations of fluorite minerals showed undersaturation, revealing that other F-bearing minerals viz. biotite and muscovite were essential in F- enrichment in groundwater. Positive matrix factorization (PMF) and principal component analysis multilinear regression (PCAMLR) models were used to determine four-factor solutions for groundwater contamination. The PMF model results were accurate and reliable compared with those of the PCAMLR model, which compiled the overlapping results. Therefore, 28.3% exceeded the WHO permissible limit of 1.5 mg/L F-. Photomicrographs of granite rocks showed enriched F-bearing minerals that trigger F- in groundwater. The community fluorosis index values were recorded at > 0.6, revealing community fluorosis and unsuitability of groundwater for drinking.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Fluoretos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Minerais/análise , Água Subterrânea/química , Isótopos/análise
2.
Geoderma ; 4322023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37928070

RESUMO

Inadvertent oral ingestion is an important exposure pathway of arsenic (As) containing soil and dust. Previous researches evidenced health risk of bioaccessible As from soil and dust, but it is unclear about As mobilization mechanisms in health implications from As exposure. In this study, we investigated As release behaviors and the solid-liquid interface reactions toward As(V)-containing iron minerals in simulated gastrointestinal bio-fluids. The maximum As release amount was 0.57 mg/L from As-containing goethite and 0.82 mg/L from As-containing hematite at 9 h, and the As bioaccessibility was 10.8% and 21.6%, respectively. The higher exposure risk from hematite-sorbed As in gastrointestinal fluid was found even though goethite initially contained more arsenate than hematite. Mechanism analysis revealed that As release was mainly coupled with acid dissolution and reductive dissolution of iron minerals. Proteases enhanced As mobilization and thus increased As bioaccessibility. The As(V) released and simultaneously transformed to high toxic As(III) by gastric pepsin, while As(V) reduction in intestine was triggered by pancreatin and freshly formed Fe(II) in gastric digests. CaCl2 reduced As bioaccessibility, indicating that calcium-rich food or drugs may be effective dietary strategies to reduce As toxicity. The results deepened our understanding of the As release mechanisms associated with iron minerals in the simulated gastrointestinal tract and supplied a dietary strategy to alleviate the health risk of incidental As intake.

3.
J Hazard Mater ; 460: 132443, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666175

RESUMO

Fluoride (F-), and arsenic (As) in the groundwater cause health problems in developing countries, including Pakistan. We evaluated the occurrence, distribution, sources apportionment, and health hazards of F-, and As in the groundwater of Mardan, Pakistan. Therefore, groundwater samples (n = 130) were collected and then analyzed for F-, and As by ion-chromatography (IC) and Inductively-coupled plasma mass-spectrometry (ICP-MS). The F-, and As concentrations in groundwater were 0.7-14.4 mg/L and 0.5-11.2 µg/L. Relatively elevated F-, and As coexists with higher pH, Na+, HCO3-, SO4-2, and depleted Ca+2 due to fluoride, sulfide-bearing minerals, and anthropogenic inputs. Both F-, and/or As are transported in subsurface water through adsorption and desorption processes. Groundwater samples 45%, and 14.2% exceeded the WHO guidelines of 1.5 mg/L and 10 µg/L. Water quality indexing (WQI-model) declared that 35.7% samples are unfit for household purposes. Saturation and undersaturation of minerals showed precipitation and mineral dissolution. Groundwater contamination by PCA-MLR and PMF-model interpreted five factors. The fitting results and R2 values of PMF (0.52-0.99)>PCA-MLR (0.50-0.95) showed high accuracy of PMF-model. Human health risk assessment (HHRA-model) revealed high non-carcinogenic and carcinogenic risk for children than adults. The percentile recovery of F- and As was recorded 98%, and 95% with reproducibility ± 5% error.


Assuntos
Arsênio , Água Subterrânea , Adulto , Criança , Humanos , Fluoretos/toxicidade , Reprodutibilidade dos Testes , Qualidade da Água
4.
Artigo em Inglês | MEDLINE | ID: mdl-36767482

RESUMO

Groundwater contamination by heavy metals (HMs) released by weathering and mineral dissolution of granite, gneisses, ultramafic, and basaltic rock composition causes human health concerns worldwide. This paper evaluated the heavy metals (HMs) concentrations and physicochemical variables of groundwater around enriched chromite mines of Malakand, Pakistan, with particular emphasis on water quality, hydro-geochemistry, spatial distribution, geochemical speciation, and human health impacts. To better understand the groundwater hydrogeochemical profile and HMs enrichment, groundwater samples were collected from the mining region (n = 35), non-mining region (n = 20), and chromite mines water (n = 5) and then analyzed using ICPMS (Agilent 7500 ICPMS). The ranges of concentrations in the mining, non-mining, and chromite mines water were 0.02-4.5, 0.02-2.3, and 5.8-6.0 mg/L for CR, 0.4-3.8, 0.05-3.6, and 3.2-5.8 mg/L for Ni, and 0.05-0.8, 0.05-0.8, and 0.6-1.2 mg/L for Mn. Geochemical speciation of groundwater variables such as OH-, H+, Cr+2, Cr+3, Cr+6, Ni+2, Mn+2, and Mn+3 was assessed by atomic fluorescence spectrometry (AFS). Geochemical speciation determined the mobilization, reactivity, and toxicity of HMs in complex groundwater systems. Groundwater facies showed 45% CaHCO3, 30% NaHCO3, 23.4% NaCl, and 1.6% Ca-Mg-Cl water types. The noncarcinogenic and carcinogenic risk of HMs outlined via hazard quotient (HQ) and total hazard indices (THI) showed the following order: Ni > Cr > Mn. Thus, the HHRA model suggested that children are more vulnerable to HMs toxicity than adults. Hierarchical agglomerative cluster analysis (HACA) showed three distinct clusters, namely the least, moderately, and severely polluted clusters, which determined the severity of HMs contamination to be 66.67% overall. The PCAMLR and PMF receptor model suggested geogenic (minerals prospects), anthropogenic (industrial waste and chromite mining practices), and mixed (geogenic and anthropogenic) sources for groundwater contamination. The mineral phases of groundwater suggested saturation and undersaturation. Nemerow's pollution index (NPI) values determined the unsuitability of groundwater for domestic purposes. The EC, turbidity, PO4-3, Na+, Mg+2, Ca+2, Cr, Ni, and Mn exceeded the guidelines suggested by the World Health Organization (WHO). The HMs contamination and carcinogenic and non-carcinogenic health impacts of HMs showed that the groundwater is extremely unfit for drinking, agriculture, and domestic demands. Therefore, groundwater wells around the mining region need remedial measures. Thus, to overcome the enrichment of HMs in groundwater sources, sustainable management plans are needed to reduce health risks and ensure health safety.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , Humanos , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Metais Pesados/análise , Qualidade da Água , Água Subterrânea/química , Minerais/análise , Medição de Risco , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 440: 129736, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027753

RESUMO

Irrigation activities can cause strong geochemical and hydrological fluctuations in the unsaturated zone, and affect arsenic (As) migration and transformation. The As geochemical cycle in the unsaturated zone is coupled with that of iron minerals through sorption-desorption, coprecipitation and redox processes. Dynamic batch experiments and wetting-drying cycling column experiments were conducted to evaluate As mobilization behaviors under the effects of exogenous substances, redox condition and intermittent flow. Our results show that As release under exogenous substances carried by irrigation (e.g., phosphate, carbonate, fulvic acid, humic acid, etc.) followed three trends with the types of exogenous inputs. Inorganic anions and organic matter resulted in opposite trends of arsenate release in different redox conditions. In anoxic environments, As(V) release was favored by the addition of phosphate and carbonate, while in oxic environments, the mobilization of As(V) was promoted by the addition of fulvic acid (FA). Further, intermittent irrigation promoted the reductive dissolution of Fe oxides and the mobilization of As. The addition of humic acid (HA) resulted in the mobilization of arsenate as As-Fe-HA ternary complexes. The mechanism of arsenic mobilization under irrigation has importance for prevention of arsenic exposure through soil to food chain transfer in typical high arsenic farmland.


Assuntos
Arsênio , Arseniatos/química , Arsênio/metabolismo , Substâncias Húmicas/análise , Ferro , Minerais , Oxirredução , Óxidos , Fosfatos/química , Solo
6.
Artigo em Inglês | MEDLINE | ID: mdl-35682055

RESUMO

Groundwater contamination by potentially harmful elements (PHEs) originating from the weathering of granitic and gneissic rock dissolution poses a public health concern worldwide. This study investigated physicochemical variables and PHEs in the groundwater system and mine water of the Adenzai flood plain region, in Pakistan, emphasizing the fate distribution, source provenance, chemical speciation, and health hazard using the human health risk assessment HHRA-model. The average concentrations of the PHEs, viz., Ni, Mn, Cr, Cu, Cd, Pb, Co, Fe, and Zn 0.23, were 0.27, 0.07, 0.30, 0.07, 0.06, 0.08, 0.68, and 0.23 mg/L, respectively. The average values of chemical species in the groundwater system, viz., H+, OH−, Ni2+, Mn2+, Mn3+, Cr3+, Cr6+, Cu+, Cu2+, Cd2+, Pb2+, Pb4+, Co2+, Co3+, Fe2+, Fe3+, and Zn2+, were 1.0 × 10−4 ± 1.0 × 10−6, 1.0 × 10−4 ± 9.0 × 10−7, 2.0 × 10−1 ± 1.0 × 10−3, 3.0 × 10−1 ± 1.0 × 10−3, 1.0 × 10−22 ± 1.0 × 10−23, 4.0 × 10−6 ± 2.0 × 10−6, 4.0 × 10−11 ± 2.0 × 10−11, 9.0 × 10−3 ± 1.0 × 10−2, 2.0 × 10−1 ± 2.0 × 10−3, 7.0 × 10−2 ± 6.0 × 10−2, 5.0 × 10−2 ± 5.0 × 10−2, 2.0 × 10−2 ± 1.5 × 10−2, 6.0 × 10−2 ± 4.0 × 10−2, 8.0 × 10−31 ± 6.0 × 10−31, 3.0 × 10−1 ± 2.0 × 10−4, 4.0 × 10−10 ± 3.0 × 10−10, and 2.0 × 10−1 ± 1.0 × 10−1. The mineral compositions of PHEs, viz. Ni, were bunsenite, Ni(OH)2, and trevorite; Mn viz., birnessite, bixbyite, hausmannite, manganite, manganosite, pyrolusite, and todorokite; Cr viz., chromite and eskolaite; Cu viz., CuCr2O4, cuprite, delafossite, ferrite-Cu, and tenorite; Cd viz., monteponite; Pb viz, crocoite, litharge, massicot, minium, plattnerite, Co viz., spinel-Co; Fe viz., goethite, hematite, magnetite, wustite, and ferrite-Zn; and Zn viz., zincite, and ZnCr2O4 demarcated undersaturation and supersaturation. However, EC, Ca2+, K+, Na+, HCO3−, Cr, Cd, Pb, Co, and Fe had exceeded the WHO guideline. The Nemerow's pollution index (NPI) showed that EC, Ca2+, K+, Na+, HCO3−, Mn, Cd, Pb, Co, and Fe had worse water quality. Principal component analysis multilinear regression (PCAMLR) and cluster analysis (CA) revealed that 75% of the groundwater contamination originated from geogenic inputs and 18% mixed geogenic-anthropogenic and 7% anthropogenic sources. The HHRA-model suggested potential non-carcinogenic risks, except for Fe, and substantial carcinogenic risks for evaluated PHEs. The women and infants are extremely exposed to PHEs hazards. The non-carcinogenic and carcinogenic risks in children, males, and females had exceeded their desired level. The HHRA values of PHEs exhibited the following increasing pattern: Co > Cu > Mn > Zn > Fe, and Cd > Pb > Ni > Cr. The higher THI values of PHEs in children and adults suggested that the groundwater consumption in the entire region is unfit for drinking, domestic, and agricultural purposes. Thus, all groundwater sources need immediate remedial measures to secure health safety and public health concerns.


Assuntos
Água Subterrânea , Metais Pesados , Adulto , Cádmio/análise , Criança , Monitoramento Ambiental , Feminino , Humanos , Chumbo/análise , Metais Pesados/análise , Saúde Pública , Medição de Risco , Qualidade da Água
7.
Environ Sci Pollut Res Int ; 29(50): 75744-75768, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35661301

RESUMO

Globally, potentially toxic elements (PTEs) and bacterial contamination pose health hazards, persistency, and genotoxicity in the groundwater aquifer. This study evaluates PTE concentration, carcinogenic and noncarcinogenic health hazards, groundwater quality indexing (GWQI-model), source provenance, and fate distribution in the groundwater of Hindukush ranges, Pakistan. The new estimates of USEPA equations record new research dimensions for carcinogenic and noncarcinogenic hazards. The principal component analysis (PCA), mineral phases, and spatial distribution determine groundwater contamination and its impacts. The average concentrations of PTEs, viz., Cd, Cu, Co, Fe, Pb, and Zn, were 0.06, 0.27, 0.07, 0.55, 0.05, and 0.19 mg/L, and E. coli, F. coli, and P. coli were 27.5, 24.0, and 19.0 CFU/100 ml. Moreover, the average values of basic minerals, viz., anhydrite, aragonite, calcite, dolomite, gypsum, halite, and hydroxyl apatite, were 0.4, 2.4, 2.6, 5.1, 0.6, and - 4.0, 11.2, and PTE minerals like monteponite, tenorite, cuprite, cuprous ferrite, cupric ferrite, ferrihydrite, goethite, hematite, lepidocrocite, maghemite, magnetite, massicot, minium, litharge, plattnerite, and zincite were - 5.5, 2.23, 4.65, 18.56, 20.0, 4.84, 7.54, 17.46, 6.66, 9.67, 22.72, - 3.36, 22.9, 3.16, - 18.0, and 1.46. The groundwater showed carcinogenic and non-carcinogenic health hazards for children and adults. The GWQI-model showed that 58.3% of samples revealed worse water quality. PCA revealed rock weathering, mineral dissolution, water-rock interaction, and industrial effluents as the dominant factors influencing groundwater chemistry. Carbonate weathering and ion exchange play vital roles in altering CaHCO3 type to NaHCO3 water. In this study, E. coli, F. coli, P. coli, EC, turbidity, TSS, PO43─, Na+, Mg+2, Ca+2, Cd, Co, Fe, and Pb have exceeded the World Health Organization (WHO) guidelines. The carcinogenic and non-carcinogenic impacts of PTEs and bacterial contamination declared that the groundwater is unfit for drinking and domestic purposes.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adulto , Apatitas , Cádmio/análise , Carbonato de Cálcio/análise , Sulfato de Cálcio/análise , Carcinógenos/análise , Criança , Monitoramento Ambiental/métodos , Escherichia coli , Compostos Férricos , Óxido Ferroso-Férrico/análise , Sistemas de Informação Geográfica , Água Subterrânea/análise , Humanos , Chumbo/análise , Minerais/análise , Paquistão , Medição de Risco , Poluentes Químicos da Água/análise , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA