Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mil Med Res ; 6(1): 22, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31331385

RESUMO

BACKGROUND: The exogenous application of low-intensity electric stimulation (ES) may mimic a natural endogenous bioelectric current and accelerate the repair process of skin wounds. This study designed a novel microcurrent dressing (MCD) and evaluated its potential effects on wound healing in a rat skin defect model. METHODS: First, wireless ES was integrated into a medical cotton cushion to fabricate the MCD, and its electrical property was examined by using a universal power meter. Then, animal experiments were conducted to evaluate the MCD's effect. Forty-five rats were randomized into control (Con) group, Vaseline gauze (VG) group and MCD group. A full-thickness round skin incision 1.5 cm in diameter was made on the back of each animal. Apart from routine disinfection, the Con rats were untreated, whereas the other two groups were treated with VG or MCD. On days 3, 7 and 14 post injury, the wound areas were observed and measured using image analysis software following photography, and the skin samples were harvested from wound tissue. Then, histopathological morphology was observed routinely by hematoxylin and eosin (HE) staining; tumor necrosis factor α (TNF-α) and interleukin (IL)-1ß expression were detected by Western blotting. Vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) expression were detected with immunohistochemistry. RESULTS: The MCD generated a sf electric potential greater than 0.95 V. Animal experiments showed that the wound-healing rate in the MCD group was significantly increased compared with the Con and VG groups (P < 0.05 or P < 0.01). Histopathological observation revealed an alleviated inflammatory response, induced vascular proliferation and accelerated epithelization in the MCD group. Moreover, samples from the MCD group expressed reduced TNF-α and IL-1ß levels and increased VEGF and EGF levels compared with those of the other two groups (P < 0.05 or P < 0.01). However, no significant difference was noted between the Con and VG groups at each time point. CONCLUSIONS: The MCD generates a stable and lasting ES and significantly promotes wound healing by reducing inflammation duration and increasing growth factors expression. Thus, MCD may act as a promising biomaterial device for skin wound healing.


Assuntos
Bandagens , Estimulação Elétrica/instrumentação , Cicatrização , Animais , Fator de Crescimento Epidérmico/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Biomed Environ Sci ; 30(12): 927-931, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29335064

RESUMO

Little information is available about the effects of exposure to pulsed microwaves on neuronal Ca2+ signaling under non-thermal conditions. In this study, rat pheochromocytoma (PC12) cells were exposed to pulsed microwaves for 6 min at a specific absorption rate (SAR) of 4 W/kg to assess possible real-time effects. During microwave exposure, free calcium dynamics in the cytosol, mitochondria, and nucleus of cells were monitored by time-lapse microfluorimetry using a genetically encoded calcium indicator (ratiometric-pericam, ratiometric-pericam-mt, and ratiometric-pericam-nu). We established a waveguide-based real-time microwave exposure system under accurately controlled environmental and dosimetric conditions and found no significant changes in the cytosolic, mitochondrial, or nuclear calcium levels in PC12 cells. These findings suggest that no dynamic changes occurred in [Ca2+]c, [Ca2+]m, or [Ca2+]n of PC12 cells at the non-thermal level.


Assuntos
Cálcio/metabolismo , Núcleo Celular/efeitos da radiação , Citosol/efeitos da radiação , Micro-Ondas , Mitocôndrias/efeitos da radiação , Animais , Núcleo Celular/metabolismo , Citosol/metabolismo , Microscopia Confocal , Mitocôndrias/metabolismo , Células PC12 , Ratos
3.
Chin J Integr Med ; 22(2): 110-5, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26142339

RESUMO

OBJECTIVE: To investigate the effects of Heijiangdan Ointment ( HJD) on oxidative stress in (60)Co γ-ray radiation-induced dermatitis in mice. METHODS: Female Wistar mice with grade 4 radiation dermatitis induced by (60)Co γ-rays were randomly divided into four groups (n=12 per group); the HJD-treated, recombinant human epidermal growth factor (rhEGF)-treated, Trolox-treated, and untreated groups, along with a negative control group. On the 11th and 21st days after treatment, 6 mice in each group were chosen for evaluation. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), and lactate dehydrogenase (LDH) were detected using spectrophotometric methods. The fibroblast mitochondria were observed by transmission electron microscopy (TEM). The expressions of fibroblast growth factor 2 (FGF-2) and transforming growth factor ß1 (TGF-ß1) were analyzed by western blot. RESULTS: Compared with the untreated group, the levels of SOD, MDA and LDH, on the 11th and 21st days after treatment showed significant difference (P<0.05). TEM analysis indicated that fibroblast mitochondria in the untreated group exhibited swelling and the cristae appeared fractured, while in the HJD group, the swelling of mitochondria was limited and the rough endoplasmic reticulum appeared more relaxed. The expressions of FGF-2 and TGF-ß1 increased in the untreated group compared with the negative control group (P<0.05). After treatment, the expression of FGF-2, rhEGF and Trolox in the HJD group were significantly increased compared with the untreated group (P<0.05), or compared with the negative control group (P<0.05). The expression of TGF-ß1 showed significant difference between untreated and negative control groups (P<0.05). HJD and Trolox increased the level of TGF-ß1 and the difference was marked as compared with the untreated and negative control groups (P<0.05). CONCLUSION: HJD relieves oxidative stress-induced injury, increases the antioxidant activity, mitigates the fibroblast mitochondrial damage, up-regulates the expression of growth factor, and promotes mitochondrial repair in mice.


Assuntos
Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Dermatite/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Raios gama , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Lesões por Radiação/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Radioisótopos de Cobalto , Dermatite/complicações , Dermatite/patologia , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Humanos , L-Lactato Desidrogenase/metabolismo , Malondialdeído/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Pomadas , Preparações Farmacêuticas , Lesões por Radiação/complicações , Lesões por Radiação/patologia , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação
4.
Mol Neurobiol ; 53(4): 2100-11, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25917873

RESUMO

Microwave radiation has been implicated in cognitive dysfunction and neuronal injury in animal models and in human investigations; however, the mechanism of these effects is unclear. In this study, single nucleotide polymorphism (SNP) sites in the rat GRIN2B promoter region were screened. The associations of these SNPs with microwave-induced rat brain dysfunction and with rat pheochromocytoma-12 (PC12) cell function were investigated. Wistar rats (n = 160) were exposed to microwave radiation (30 mW/cm(2) for 5 min/day, 5 days/week, over a period of 2 months). Screening of the GRIN2B promoter region revealed a stable C-to-T variant at nucleotide position -217 that was not induced by microwave exposure. The learning and memory ability, amino acid contents in the hippocampus and cerebrospinal fluid, and NR2B expression were then investigated in the different genotypes. Following microwave exposure, NR2B protein expression decreased, while the Glu contents in the hippocampus and CSF increased, and memory impairment was observed in the TT genotype but not the CC and CT genotypes. In PC12 cells, the effects of the T allele were more pronounced than those of the C allele on transcription factor binding ability, transcriptional activity, NR2B mRNA, and protein expression. These effects may be related to the detrimental role of the T allele and the protective role of the C allele in rat brain function and PC12 cells exposed to microwave radiation.


Assuntos
Micro-Ondas , Neurônios/patologia , Regiões Promotoras Genéticas , Subunidades Proteicas/genética , Receptores de N-Metil-D-Aspartato/genética , Animais , Sequência de Bases , Encéfalo/patologia , Proliferação de Células , Frequência do Gene/genética , Variação Genética , Genótipo , Masculino , Células PC12 , Subunidades Proteicas/metabolismo , Ratos , Ratos Wistar
5.
Pathobiology ; 82(5): 181-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26337368

RESUMO

Recent studies have highlighted the important role of the postsynaptic NMDAR-PSD95-CaMKII pathway for synaptic transmission and related neuronal injury. Here, we tested changes in the components of this pathway upon microwave-induced neuronal structure and function impairments. Ultrastructural and functional changes were induced in hippocampal neurons of rats and in PC12 cells exposed to microwave radiation. We detected abnormal protein and mRNA expression, as well as posttranslational modifications in the NMDAR-PSD95-CaMKII pathway and its associated components, such as synapsin I, following microwave radiation exposure of rats and PC12 cells. Thus, microwave radiation may induce neuronal injury via changes in the molecular organization of postsynaptic density and modulation of the biochemical cascade that potentiates synaptic transmission.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hipocampo/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Micro-Ondas/efeitos adversos , Neurônios/efeitos da radiação , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína 4 Homóloga a Disks-Large , Hipocampo/química , Hipocampo/citologia , Hipocampo/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Células PC12 , Densidade Pós-Sináptica/efeitos da radiação , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/efeitos da radiação , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais , Transmissão Sináptica/efeitos da radiação
6.
Biomed Res Int ; 2015: 124721, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25866755

RESUMO

The purpose of this paper is to explore the change of NF-κB signaling pathway in intestinal epithelial cell induced by fission neutron irradiation and the influence of the PI3K/Akt pathway inhibitor LY294002. Three groups of IEC-6 cell lines were given: control group, neutron irradiation of 4 Gy group, and neutron irradiation of 4 Gy with LY294002 treatment group. Except the control group, the other groups were irradiated by neutron of 4 Gy. LY294002 was given before 24 hours of neutron irradiation. At 6 h and 24 h after neutron irradiation, the morphologic changes, proliferation ability, apoptosis, and necrosis rates of the IEC-6 cell lines were assayed and the changes of NF-κB and PI3K/Akt pathway were detected. At 6 h and 24 h after neutron irradiation of 4 Gy, the proliferation ability of the IEC-6 cells decreased and lots of apoptotic and necrotic cells were found. The injuries in LY294002 treatment and neutron irradiation group were more serious than those in control and neutron irradiation groups. The results suggest that IEC-6 cells were obviously damaged and induced serious apoptosis and necrosis by neutron irradiation of 4Gy; the NF-κB signaling pathway in IEC-6 was activated by neutron irradiation which could protect IEC-6 against injury by neutron irradiation; LY294002 could inhibit the activity of IEC-6 cells.


Assuntos
Apoptose/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Nêutrons/efeitos adversos , Transdução de Sinais/efeitos da radiação , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Células Epiteliais/patologia , Mucosa Intestinal/patologia , Morfolinas/farmacologia , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
7.
Biomed Environ Sci ; 28(1): 13-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25566859

RESUMO

OBJECTIVE: The aim of this study is to investigate whether microwave exposure would affect the N-methyl-D-aspartate receptor (NMDAR) signaling pathway to establish whether this plays a role in synaptic plasticity impairment. METHODS: 48 male Wistar rats were exposed to 30 mW/cm2 microwave for 10 min every other day for three times. Hippocampal structure was observed through H&E staining and transmission electron microscope. PC12 cells were exposed to 30 mW/cm2 microwave for 5 min and the synapse morphology was visualized with scanning electron microscope and atomic force microscope. The release of amino acid neurotransmitters and calcium influx were detected. The expressions of several key NMDAR signaling molecules were evaluated. RESULTS: Microwave exposure caused injury in rat hippocampal structure and PC12 cells, especially the structure and quantity of synapses. The ratio of glutamic acid and gamma-aminobutyric acid neurotransmitters was increased and the intracellular calcium level was elevated in PC12 cells. A significant change in NMDAR subunits (NR1, NR2A, and NR2B) and related signaling molecules (Ca2+/calmodulin-dependent kinase II gamma and phosphorylated cAMP-response element binding protein) were examined. CONCLUSION: 30 mW/cm2 microwave exposure resulted in alterations of synaptic structure, amino acid neurotransmitter release and calcium influx. NMDAR signaling molecules were closely associated with impaired synaptic plasticity.


Assuntos
Hipocampo/citologia , Micro-Ondas , Plasticidade Neuronal/efeitos da radiação , Neurônios/efeitos da radiação , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos da radiação , Animais , Regulação da Expressão Gênica/efeitos da radiação , Neurotransmissores/metabolismo , Células PC12 , Ratos , Receptores de N-Metil-D-Aspartato/genética , Transdução de Sinais/fisiologia , Fatores de Tempo
8.
Mol Neurobiol ; 52(1): 478-91, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25195697

RESUMO

Microwaves have been suggested to induce neuronal injury and increase permeability of the blood-brain barrier (BBB), but the mechanism remains unknown. The role of the vascular endothelial growth factor (VEGF)/Flk-1-Raf/MAPK kinase (MEK)/extracellular-regulated protein kinase (ERK) pathway in structural and functional injury of the blood-brain barrier (BBB) following microwave exposure was examined. An in vitro BBB model composed of the ECV304 cell line and primary rat cerebral astrocytes was exposed to microwave radiation (50 mW/cm(2), 5 min). The structure was observed by scanning electron microscopy (SEM) and the permeability was assessed by measuring transendothelial electrical resistance (TEER) and horseradish peroxidase (HRP) transmission. Activity and expression of VEGF/Flk-1-ERK pathway components and occludin also were examined. Our results showed that microwave radiation caused intercellular tight junctions to broaden and fracture with decreased TEER values and increased HRP permeability. After microwave exposure, activation of the VEGF/Flk-1-ERK pathway and Tyr phosphorylation of occludin were observed, along with down-regulated expression and interaction of occludin with zonula occludens-1 (ZO-1). After Flk-1 (SU5416) and MEK1/2 (U0126) inhibitors were used, the structure and function of the BBB were recovered. The increase in expression of ERK signal transduction molecules was muted, while the expression and the activity of occludin were accelerated, as well as the interactions of occludin with p-ERK and ZO-1 following microwave radiation. Thus, microwave radiation may induce BBB damage by activating the VEGF/Flk-1-ERK pathway, enhancing Tyr phosphorylation of occludin, while partially inhibiting expression and interaction of occludin with ZO-1.


Assuntos
Barreira Hematoencefálica/lesões , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Micro-Ondas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Linhagem Celular , Modelos Biológicos , Ocludina/metabolismo , Permeabilidade , Ratos , Transdução de Sinais , Junções Íntimas/metabolismo
9.
Mol Neurobiol ; 50(3): 1024-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24627260

RESUMO

Microwave-induced learning and memory deficits in animal models have been gaining attention in recent years, largely because of increasing public concerns on growing environmental influences. The data from our group and others have showed that the injury of mitochondria, the major source of cellular adenosine triphosphate (ATP) in primary neurons, could be detected in the neuron cells of microwave-exposed rats. In this study, we provided some insights into the cellular and molecular mechanisms behind mitochondrial injury in PC12 cell-derived neuron-like cells. PC12 cell-derived neuron-like cells were exposed to 30 mW/cm(2) microwave for 5 min, and damages of mitochondrial ultrastructure could be observed by using transmission electron microscopy. Impairments of mitochondrial function, indicated by decrease of ATP content, reduction of succinate dehydrogenase (SDH) and cytochrome c oxidase (COX) activities, decrease of mitochondrial membrane potential (MMP), and increase of reactive oxygen species (ROS) production, could be detected. We also found that hypoxia-inducible factor-1 (HIF-1α), a key regulator responsible for hypoxic response of the mammalian cells, was upregulated in microwave-exposed neuron-like cells. Furthermore, HIF-1α overexpression protected mitochondria from injury by increasing the ATP contents and MMP, while HIF-1α silence promoted microwave-induced mitochondrial damage. Finally, we demonstrated that both ERK and PI3K signaling activation are required in microwave-induced HIF-1α activation and protective response. In conclusion, we elucidated a regulatory connection between impairments of mitochondrial function and HIF-1α activation in microwave-exposed neuron-like cells. By modulating mitochondrial function and protecting neuron-like cells against microwave-induced mitochondrial injury, HIF-1α represents a promising therapeutic target for microwave radiation injury.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Micro-Ondas , Mitocôndrias/efeitos da radiação , Neurônios/efeitos da radiação , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos da radiação , Regulação para Cima/efeitos da radiação , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Potencial da Membrana Mitocondrial/efeitos da radiação , Mitocôndrias/metabolismo , Neurônios/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
10.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 27(4): 399-401, 404, 2011 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-21481316

RESUMO

AIM: To construct the eukaryotic expression vectors of RKIP plasmid and detect its expression in PC12 cells. METHODS: The coding sequence of RKIP was generated by nested-PCR using total RNA extracted from the root ganglion neurons of rats. RKIP gene was cloned into the eukaryotic expression vector pcDNA3.0. After restriction enzyme analysis and sequence identification, the recombinant plasmid was transfected into PC12 cells with non-liposome mediated method by Vigofect. The expression of RKIP was detected by Western blot. RESULTS: The results of enzyme analysis and sequencing both identified DNA sequence of recombinant plasmid pcDNA3.0-RKIP correctly. The expression of RKIP increased obviously after transfection into PC12 cells. CONCLUSION: The eukaryotic expression plasmid of pcDNA3.0-RKIP was constructed successfully and it can be sustainly expressed in PC12 cells. This provides experimental basis for further study on the neurological function of RKIP.


Assuntos
Proteína de Ligação a Fosfatidiletanolamina/genética , Plasmídeos , Animais , Células PC12 , Ratos , Recombinação Genética , Transfecção
11.
Zhonghua Nan Ke Xue ; 17(3): 214-8, 2011 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-21485541

RESUMO

OBJECTIVE: To investigate the effect of long-term microwave radiation on male reproduction in rats. METHODS: A total of 100 male Wistar rats were exposed to microwave radiation with average power density of 0, 2.5, 5 and 10 mW/cm2 for 4 weeks, 5 times a week and 6 minutes per time. Changes in serum testosterone, testicular index, histology and ultrastructure, and the percentage of teratospermia in the epididymis were observed dynamically at 6 h, 7 d, 14 d, 28 d and 60 d after the exposure. RESULTS: There was a significant decrease in serum testosterone concentration at 28 d after microwave radiation at 2.5, 5 and 10 mW/cm2 ([10.20 +/- 4.31] ng/ml, [5.56 +/- 3.47] ng/ml and [7.53 +/- 4.54] ng/ml) and at 60 d at 10 mW/cm2 ( [15.95 +/- 9.54] ng/ml), as compared with the control group ([23.35 +/- 8.06] ng/ml and [31.40 +/- 9.56] ng/ml) (P < 0.05 or P < 0.01). No significant changes were found in the testis index at 6 h -60 d after microwave radiation at the three doses, but different degrees of degeneration, necrosis and shedding of spermatogenic cells, thinning of spermatogenic epithelia, and decrease or deletion of spermatozoa were observed, and more obvious at 28 d and 60 d. Swelling and cavitation of mitochondria in all spermatogenic cells, agglutination and margin translocation of nuclear chromatin in the spermatogonial and Leydig cells were seen at 7 d and 60 d after 5 mW/cm2 microwave radiation. The rate of teratospermia of the epididymis was increased, more obviously at 7 d after 2.5, 5 mW/cm2, 60 d after 5 mW/cm2, and 7 d, 28 d and 60 d after 10 mW/cm2 microwave radiation (P < 0.05 or P < 0.01). CONCLUSION: Long-term microwave radiation may cause injury to male reproduction, which is positively correlated with the radiation dose, and has an obvious late effect.


Assuntos
Micro-Ondas/efeitos adversos , Reprodução/efeitos da radiação , Cabeça do Espermatozoide/efeitos da radiação , Testículo/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Masculino , Ratos , Ratos Wistar
12.
Zhonghua Nan Ke Xue ; 16(1): 10-3, 2010 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-20180397

RESUMO

OBJECTIVE: To explore the changes in the expressions of the tight junction related protein occludin and junctional adhesion molecule-1 (JAM-1) of the blood-testis barrier and their significance in rats after microwave radiation. METHODS: Eighty male Wistar rats were exposed to microwave radiation with average power density of 0, 10, 30 and 100 mW/cm2 for five minutes, and dynamic changes in the expressions of testicular occludin and JAM-1 were observed by Western blot and image analysis at 6 h, 1 d, 3 d, 7 d and 14 d after the radiation. RESULTS: There was a significant down-regulation in the expression of the occludin protein at 3 - 7 d, 6 h - 7 d and 6 h - 14 d (P < 0. 05), as well as in that of JAM-1 at 3 - 7 d, 1 - 7 d and 1-14 d (P < 0.05) after exposure to 10, 30 and 100 mW/cm2 microwave radiation. CONCLUSION: The decreased protein expressions of occludin and JAM-1 may play an important role in the microwave radiation induced-damage to the blood-testis barrier.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Membrana/metabolismo , Micro-Ondas , Testículo/metabolismo , Testículo/efeitos da radiação , Animais , Barreira Hematotesticular/metabolismo , Barreira Hematotesticular/efeitos da radiação , Regulação para Baixo , Masculino , Ocludina , Ratos , Ratos Wistar
13.
Gut ; 59(6): 817-26, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19880967

RESUMO

BACKGROUND: Human hepassocin (HPS) was originally detected by subtractive and differential cDNA cloning as a liver-specific gene that was markedly upregulated during liver regeneration. Previous studies suggested that HPS showed mitogenic activity on isolated hepatocytes in vitro. However, its in vivo functions remained largely unknown. Therefore, the function of recombinant human HPS during liver regeneration and chemically induced liver injury was investigated. METHODS: The proliferation of primary hepatocytes was examined by [(3)H]thymidine incorporation and immunohistological staining of proliferating cell nuclear antigen (PCNA). RNA interference was performed to knock down the endogenous expression of HPS. The proliferation of L02 cells was examined by MTS assay. The phosphorylation of ERK1/2 (extracellular signal-regulated kinase 1/2) was investigated by western blotting analysis. Assessment of liver injury (histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels) and of apoptosis, by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) assay, was performed. RESULTS: Purified recombinant human HPS showed specific mitogenic activity on primary hepatocytes and normal liver cell lines in a mitogen-activated protein kinase (MAPK)-dependent manner and stimulated the proliferation of hepatocytes in rats with 70% partial hepatectomy. Administration of HPS to rats after d-galactose and carbon tetrachloride (CCl(4)) treatment protected against liver injury (minimal liver necrosis, depressed ALT and AST levels, and decreased lethality), reduced apoptosis and enhanced proliferation. Knock-down of endogenous HPS in vivo enhanced the liver injury induced by d-galactose by increasing the apoptosis and elevating ALT and AST levels. CONCLUSIONS: HPS is a hepatic growth factor which can accelerate hepatocyte proliferation in vivo and protect against liver injury. These data point to the potential interest of HPS in the treatment of fulminant hepatic failure.


Assuntos
Hepatócitos/efeitos dos fármacos , Falência Hepática Aguda/tratamento farmacológico , Proteínas de Neoplasias/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Fibrinogênio , Hepatócitos/patologia , Humanos , Falência Hepática Aguda/patologia , Regeneração Hepática/efeitos dos fármacos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Proteínas de Neoplasias/farmacologia , Interferência de RNA , Ratos , Ratos Wistar , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
14.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 25(1): 27-30, 2009 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-19126384

RESUMO

AIM: To explore the effect of IL-11 on the activation of Jak/STAT pathway and the expressions of Bax and Bcl-2 in the intestinal epithelial cells exposed to neutron radiation. METHODS: The BALB/c mice and IEC-6, irradiated by 4 Gy neutron with or without IL-11 treatment, served as in vivo and in vitro model seperately. The changes of the intestines, activity of Jak1 and STAT3 and expressions of Bax and Bcl-2 were observed by HE staining, Western blot, EMSA, immunohistochemistry and image analysis. RESULTS: (1)Mice exposed to neutron radiation showed severe intestinal damages and no obvious regeneration was seen. IL-11-treated mice had a larger number of cryptal epithelial cells and crypts. (2)Neutron radiation decreased the activities of Jak1 and STAT3, while IL-11 increased their activities. (3) Neutron radiation decreased the expression of Bax and didn't change the level of Bcl-2 in the murine intestine. IL-11 administration decreased the expression of Bax and increased that of Bcl-2. CONCLUSION: The mechanism of the intestinal protection of IL-11 in neutron irradiation might be that IL-11 stimulation triggered activation of Jak/STAT pathway, downregulated the expression of Bax and upregulated the expression of Bcl-2.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Interleucina-11/farmacologia , Mucosa Intestinal/citologia , Janus Quinase 1/metabolismo , Nêutrons/efeitos adversos , Fator de Transcrição STAT3/metabolismo , Animais , Western Blotting , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Células Epiteliais/efeitos da radiação , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
15.
Artigo em Chinês | MEDLINE | ID: mdl-20137297

RESUMO

OBJECTIVE: To explore whether microwave radiation may cause injury of primary cultured Sertoli cells. METHODS: The model of primary cultured Sertoli cells in vitro was established, which was radiated by microwave with average power density 0, 30 and 100 mW/cm(2) for five minutes. The changes of cell cycle, apoptosis and death, and intracellular Ca2+ concentration in the Sertoli cells were measured at sixth hours through Annexin V-PI double labeling and Fluo-3-AM labeling, flow cytometry combined with laser scanning confocal microscopy after microwave exposure. RESULTS: The numbers of Sertoli cells were obviously reduced in G0-G1 and G2-M phase (62.57% +/- 3.22% and 8.25% +/- 1.75%) and increased in S phase (29.17% +/- 4.87%) compared with the control groups (79.18% +/- 0.24%, 11.17% +/- 0.50% and 9.64% +/- 0.62%) (P < 0.05 or P < 0.01), but the changes of rate of apoptosis and death and intracellular Ca2+ concentration showed no difference at 6 h after exposure to 30 mW/cm(2) microwave. There was a significant increase in the Sertoli cell counts of G0-G1 phase (87.69% +/- 1.32%), and decrease in the Sertoli cell counts of G2-M and S phase (7.41% +/- 0.60% and 4.87% +/- 0.91%) (P < 0.01). There was also a significant increase in intracellular Ca2+ concentration and rate of apoptosis and death (P < 0.05 or P < 0.01) at 6 h after exposure to 100 mW/cm(2) microwave. CONCLUSION: 100 mW/cm(2) microwave radiation may cause growth inhibition and increase of apoptosis and death in the primary cultured Sertoli cells. The increase of intracellular Ca2+ concentration is one of the injury mechanisms.


Assuntos
Micro-Ondas/efeitos adversos , Células de Sertoli/efeitos da radiação , Animais , Apoptose/efeitos da radiação , Cálcio/metabolismo , Ciclo Celular/efeitos da radiação , Células Cultivadas , Masculino , Ratos , Ratos Wistar , Células de Sertoli/metabolismo , Células de Sertoli/patologia
16.
Artigo em Chinês | MEDLINE | ID: mdl-20137298

RESUMO

OBJECTIVE: To investigate the expression of aquaporin 4 (AQP4) after microwave exposure and the correlation with the brain injury by radiation. METHODS: 70 male rats were exposed to microwave whose average power density was 0, 10, 30 and 100 mW/cm(2) respectively. Rats were sacrificed at 6 h, 1 d, 3 d and 7 d after exposure. Immunohistochemistry and Western blot were used to detect the expression of AQP4 in protein level in rat hippocampus, and the expression of AQP4 in gene level was measured by in situ hybridization and RT-PCR. RESULTS: The expression of AQP4 in rat hippocampus was abnormal after 10, 30, 100 mW/cm(2) microwave exposure. The protein level showed increased at first and then recovered at 10 and 30 mW/cm(2) groups, while increased progressively in 100 mW/cm(2) group within 14 d (P < 0.01). The gene expression of AQP4 was increased (0.51 +/- 0.02) at the beginning (6 h) and then regained after 10 mW/cm(2) microwave exposure, while in 30 and 100 mW/cm(2) groups, it rose to the peak at 7 d (0.46 +/- 0.02 and 0.43 +/- 0.08) and didn't get back (P = 0.004; P = 0.012). CONCLUSION: Microwave radiation can increase the expression of AQP4 in rat hippocampus. The change might participate in the process of increasing permeability of blood-brain barrier and lead to the brain edema after microwave radiation.


Assuntos
Aquaporina 4/metabolismo , Hipocampo/metabolismo , Micro-Ondas/efeitos adversos , Animais , Aquaporina 4/genética , Hipocampo/efeitos da radiação , Masculino , Ratos , Ratos Wistar
17.
Artigo em Chinês | MEDLINE | ID: mdl-21189547

RESUMO

AIM: To study the development of changes for signaling molecules related to Raf/MEK/ERK pathway in hippocampus of rats after electromagnetic radiation, and investigate the mechanisms of radiation injury. METHODS: Rats were exposed to X-HPM, S-HPM and EMP radiation source respectively, and animal model of electromagnetic radiation was established. Western blot was used to detect the expression of Raf-1, phosphorylated Raf-1 and phospholylated ERK. RESULTS: The expression of Raf-1 down-regulated during 6 h-14 d after radiation, most significantly at 7 d, and recovered at 28 d. There was no significant difference between the radiation groups. The expression of phosphorylated Raf-1 and phosphorylated ERK both up-regulated at 6 h and 7 d after radiation, more significantly at 6 h, and the two microwave groups were more serious for phosphorylated ERK. During 6 h-14 d after S-HPM radiation, the expression of phosphorylated Raf-1 increased continuously, but phosphorylated ERK changed wavily, 6 h and 7 d were expression peak. CONCLUSION: Raf/MEK/ERK signaling pathway participates in the hippocampus injury induced by electromagnetic radiation. The excessive activation of ERK pathway may result in the apoptosis and death of neurons, which is the important mechanism of recognition disfunction caused by electromagnetic radiation.


Assuntos
Radiação Eletromagnética , Hipocampo/efeitos da radiação , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos da radiação , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Apoptose , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Fosforilação , Distribuição Aleatória , Ratos , Ratos Wistar
18.
Zhonghua Nan Ke Xue ; 14(7): 579-82, 2008 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-18686375

RESUMO

OBJECTIVE: To determine the effect of high power microwave (HPM) radiation on the structure and function of blood-testis barrier (BTB) in rats. METHODS: One hundred and sixty-six male Wistar rats were treated by heart perfusion of lanthanum-glutaraldehyde solution and tail vein injection of evans blue (EB) at 6 h, 1, 3, 7 and 14 d after exposed to 0, 10, 30 and 100 mW/cm2 HPM radiation for 5 minutes, the structural change of BTB and distribution of lanthanum or EB observed through the light microscope, electron microscope and laser scanning confocal microscopy (LSCM). RESULTS: Testicular interstitial edema, vascular congestion or hyperemia with accumulation of plasma proteins and red blood cells in the inner compartment of seminiferous tubules were observed after exposure to HPM. The above-mentioned pathological changes were aggravated at 1-7 d and relieved at 14 d after radiation, obviously more severe in the 30 and 100 mW/cm2 exposure groups than in the 10 mW/cm2. Both lanthanum precipitation and EB were deposited in the inner compartment. CONCLUSION: HPM radiation may damage the structure and increase the permeability of BTB.


Assuntos
Barreira Hematotesticular/efeitos da radiação , Micro-Ondas/efeitos adversos , Animais , Barreira Hematotesticular/patologia , Barreira Hematotesticular/fisiopatologia , Masculino , Ratos , Ratos Wistar
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 24(7): 655-9, 2008 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-18616904

RESUMO

AIM: To investigate the effect of microwave radiation on expression and phosphorylation of synapsin I and to discover the mechanism by research on the change of expression of BDNF and its receptor, TrkB. METHODS: PC12 cells were exposed to microwave with average power density being 30 mW/cm(2). HPLC was used to detect the release of amino acids; RT-PCR, Western blot and immunocytochemistry were used to detect the expressions of synapsin I, BDNF and TrkB; immune co-precipitation was used to study the interaction of BDNF and TrkB. RESULTS: It resulted in the decrease of the release of Asp, Glu, GABA and Gly at 1 h (P<0.01) after radiation. Protein of synapsin I was decreased in 9 h-2 d (P<0.01 or P<0.05); its mRNA was decreased in 3-9 h and increased at 1 d (P<0.01 or P<0.05); its phosphorylation was decreased at 3 h, increased at 1 d, and decreased at 2 d again (P<0.01 or P<0.05) after radiation. Protein of BDNF was decreased at 3 h and increased in 1-2 d (P<0.01 or P<0.05); its mRNA were decreased in 3-9 h, increased at 1d, and decreased at 2 d again (P<0.01 or P<0.05) after radiation. Protein of TrkB was increased in 3 h-1 d (P<0.01 or P<0.05); its mRNA decreased at 3 h and 2 d (P<0.01) after radiation. The interaction between BDNF and TrkB was increased in 3-9 h, but decreased in 1-2 d (P<0.01 or P<0.05) after radiation. CONCLUSION: Microwave radiation can induce the decrease of the release of amino acids and the expression and phosphorylation of synapsin I, and the abnormality of expressions and interaction of BDNF and TrkB in PC12 cells. The factors might play a role in the injury and repair of information transmission in PC12 cells.


Assuntos
Micro-Ondas , Sinapsinas/metabolismo , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Imuno-Histoquímica , Imunoprecipitação , Células PC12 , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ratos , Receptor trkB/genética , Receptor trkB/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapsinas/genética
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 24(7): 660-2, 2008 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-18616905

RESUMO

AIM: To study the effects of electromagnetic radiation on RKIP and phosphorylated ERK in primary cultured hippocampus neurons. The inhibitor of MEK U0126 was applied to investigate the role of RKIP mediated ERK pathway in radiation injury. METHODS: Primary hippocampus neurons were cultured in vitro. X-HPM, S-HPM and EMP were taken as radiation source respectively to establish three cell models exposed to electromagnetic radiation. RKIP and phosphorylated ERK were measured by immunofluorescent labelling and laser scanning confocal microscope. Apoptosis and death fraction of the cells were detected by Annexin V-PI double labelling and flow cytometry. RESULTS: After three kinds of electromagnetic radiation, the expression of RKIP in hippocampus neurons decreased but the expression of phosphorylated ERK increased, and its nuclear translocation occurred. No significant differences were seen between radiation groups. Apoptosis and death fraction of the neurons in U0126 pretreatment groups was significantly lower than that in radiation groups but they were still higher than those in sham-radiation group. CONCLUSION: The excessive activation of RKIP mediated ERK pathway is one of the important mechanisms for the apoptosis and death of hippocampus neurons induced by electromagnetic radiation. U0126 have some protective effects on radiation injury.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/citologia , Neurônios/metabolismo , Neurônios/efeitos da radiação , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Radiação , Transdução de Sinais/efeitos da radiação , Animais , Butadienos/farmacologia , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Microscopia Confocal , Neurônios/citologia , Neurônios/efeitos dos fármacos , Nitrilas/farmacologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA