Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Ultrason Sonochem ; 104: 106837, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429167

RESUMO

The vibration mode of the radiation surface of transducer (or structure of supersaturated cavitation cloud in thin liquid) is investigated experimentally by high-speed photography. The classification of saturated, supersaturated and undersaturated cavitation clouds was proposed, and a comparison was made between saturated and supersaturated cavitation cloud structures in liquid thin layers. The characteristics and formation mechanism of supersaturated cavitation cloud structure were investigated. Based on the close correspondence and rapid response between the distribution of supersaturated cavitation clouds and vibration modes of radiation surface, a new approach is proposed to measure the vibration mode of transducer operating at high power and large amplitude in real time.

2.
Nat Commun ; 12(1): 4560, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315876

RESUMO

Alcoholic hepatitis (AH) is associated with liver neutrophil infiltration through activated cytokine pathways leading to elevated chemokine expression. Super-enhancers are expansive regulatory elements driving augmented gene expression. Here, we explore the mechanistic role of super-enhancers linking cytokine TNFα with chemokine amplification in AH. RNA-seq and histone modification ChIP-seq of human liver explants show upregulation of multiple CXCL chemokines in AH. Liver sinusoidal endothelial cells (LSEC) are identified as an important source of CXCL expression in human liver, regulated by TNFα/NF-κB signaling. A super-enhancer is identified for multiple CXCL genes by multiple approaches. dCas9-KRAB-mediated epigenome editing or pharmacologic inhibition of Bromodomain and Extraterminal (BET) proteins, transcriptional regulators vital to super-enhancer function, decreases chemokine expression in vitro and decreases neutrophil infiltration in murine models of AH. Our findings highlight the role of super-enhancer in propagating inflammatory signaling by inducing chemokine expression and the therapeutic potential of BET inhibition in AH treatment.


Assuntos
Quimiocinas/biossíntese , Citocinas/farmacologia , Elementos Facilitadores Genéticos , Hepatite Alcoólica/genética , Animais , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Epigênese Genética/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Humanos , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Regiões Promotoras Genéticas/genética , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
J Hepatol ; 71(6): 1193-1205, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31433301

RESUMO

BACKGROUND & AIMS: Hepatic recruitment of monocyte-derived macrophages (MoMFs) contributes to the inflammatory response in non-alcoholic steatohepatitis (NASH). However, how hepatocyte lipotoxicity promotes MoMF inflammation is unclear. Here we demonstrate that lipotoxic hepatocyte-derived extracellular vesicles (LPC-EVs) are enriched with active integrin ß1 (ITGß1), which promotes monocyte adhesion and liver inflammation in murine NASH. METHODS: Hepatocytes were treated with either vehicle or the toxic lipid mediator lysophosphatidylcholine (LPC); EVs were isolated from the conditioned media and subjected to proteomic analysis. C57BL/6J mice were fed a diet rich in fat, fructose, and cholesterol (FFC) to induce NASH. Mice were treated with anti-ITGß1 neutralizing antibody (ITGß1Ab) or control IgG isotype. RESULTS: Ingenuity® Pathway Analysis of the LPC-EV proteome indicated that ITG signaling is an overrepresented canonical pathway. Immunogold electron microscopy and nanoscale flow cytometry confirmed that LPC-EVs were enriched with activated ITGß1. Furthermore, we showed that LPC treatment in hepatocytes activates ITGß1 and mediates its endocytic trafficking and sorting into EVs. LPC-EVs enhanced monocyte adhesion to liver sinusoidal cells, as observed by shear stress adhesion assay. This adhesion was attenuated in the presence of ITGß1Ab. FFC-fed, ITGß1Ab-treated mice displayed reduced inflammation, defined by decreased hepatic infiltration and activation of proinflammatory MoMFs, as assessed by immunohistochemistry, mRNA expression, and flow cytometry. Likewise, mass cytometry by time-of-flight on intrahepatic leukocytes showed that ITGß1Ab reduced levels of infiltrating proinflammatory monocytes. Furthermore, ITGß1Ab treatment significantly ameliorated liver injury and fibrosis. CONCLUSIONS: Lipotoxic EVs mediate monocyte adhesion to LSECs mainly through an ITGß1-dependent mechanism. ITGß1Ab ameliorates diet-induced NASH in mice by reducing MoMF-driven inflammation, suggesting that blocking ITGß1 is a potential anti-inflammatory therapeutic strategy in human NASH. LAY SUMMARY: Herein, we report that a cell adhesion molecule termed integrin ß1 (ITGß1) plays a key role in the progression of non-alcoholic steatohepatitis (NASH). ITGß1 is released from hepatocytes under lipotoxic stress as a cargo of extracellular vesicles, and mediates monocyte adhesion to liver sinusoidal endothelial cells, which is an essential step in hepatic inflammation. In a mouse model of NASH, blocking ITGß1 reduces liver inflammation, injury and fibrosis. Hence, ITGß1 inhibition may serve as a new therapeutic strategy for NASH.


Assuntos
Anticorpos Neutralizantes , Adesão Celular/imunologia , Hepatócitos/imunologia , Integrina beta1/imunologia , Lisofosfatidilcolinas/farmacologia , Macrófagos/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Vesículas Extracelulares/imunologia , Hepatócitos/metabolismo , Humanos , Cirrose Hepática/prevenção & controle , Camundongos , Monócitos/imunologia , Hepatopatia Gordurosa não Alcoólica/terapia
4.
Gastroenterology ; 157(1): 193-209.e9, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30872106

RESUMO

BACKGROUND & AIMS: Mechanical forces contribute to portal hypertension (PHTN) and fibrogenesis. We investigated the mechanisms by which forces are transduced by liver sinusoidal endothelial cells (LSECs) into pressure and matrix changes. METHODS: We isolated primary LSECs from mice and induced mechanical stretch with a Flexcell device, to recapitulate the pulsatile forces induced by congestion, and performed microarray and RNA-sequencing analyses to identify gene expression patterns associated with stretch. We also performed studies with C57BL/6 mice (controls), mice with deletion of neutrophil elastase (NE-/-) or peptidyl arginine deiminase type IV (Pad4-/-) (enzymes that formation of neutrophil extracellular traps [NETs]), and mice with LSEC-specific deletion of Notch1 (Notch1iΔEC). We performed partial ligation of the suprahepatic inferior vena cava (pIVCL) to simulate congestive hepatopathy-induced portal hypertension in mice; some mice were given subcutaneous injections of sivelestat or underwent bile-duct ligation. Portal pressure was measured using a digital blood pressure analyzer and we performed intravital imaging of livers of mice. RESULTS: Expression of the neutrophil chemoattractant CXCL1 was up-regulated in primary LSECs exposed to mechanical stretch, compared with unexposed cells. Intravital imaging of livers in control mice revealed sinusoidal complexes of neutrophils and platelets and formation of NETs after pIVCL. NE-/- and Pad4-/- mice had lower portal pressure and livers had less fibrin compared with control mice after pIVCL and bile-duct ligation; neutrophil recruitment into sinusoidal lumen of liver might increase portal pressure by promoting sinusoid microthrombi. RNA-sequencing of LSECs identified proteins in mechanosensitive signaling pathways that are altered in response to mechanical stretch, including integrins, Notch1, and calcium signaling pathways. Mechanical stretch of LSECs increased expression of CXCL1 via integrin-dependent activation of transcription factors regulated by Notch and its interaction with the mechanosensitive piezo calcium channel. CONCLUSIONS: In studies of LSECs and knockout mice, we identified mechanosensitive angiocrine signals released by LSECs which promote PHTN by recruiting sinusoidal neutrophils and promoting formation of NETs and microthrombi. Strategies to target these pathways might be developed for treatment of PHTN. RNA-sequencing accession number: GSE119547.


Assuntos
Capilares/metabolismo , Quimiocina CXCL1/metabolismo , Células Endoteliais/metabolismo , Hipertensão Portal/metabolismo , Fígado/irrigação sanguínea , Infiltração de Neutrófilos , Estresse Mecânico , Trombose/metabolismo , Animais , Sinalização do Cálcio , Capilares/citologia , Armadilhas Extracelulares , Hidrolases/genética , Técnicas In Vitro , Integrinas/metabolismo , Elastase de Leucócito/genética , Ligadura , Fígado/metabolismo , Mecanotransdução Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pressão na Veia Porta , Proteína-Arginina Desiminase do Tipo 4 , Receptor Notch1/genética , Veia Cava Inferior/cirurgia
5.
Lab Chip ; 19(2): 306-315, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30547179

RESUMO

Oxygen tension is a central component of the cellular microenvironment and can serve as a trigger for changes in cell phenotype and function. There is a strong need to precisely control and modulate oxygen tension in cell culture systems in order to more accurately model the physiology and pathophysiology observed in vivo. The objective of this paper was to develop a simple, yet effective strategy for local control of oxygen tension in microfluidic cell cultures. Our strategy relied on fabrication of microfluidic devices using oxygen-permeable and impermeable materials. This composite device was designed so as to incorporate regions of gas permeability into the roof of the cell culture chamber and was outfitted with a reservoir for the oxygen-consuming chemical pyrogallol. When assembled and filled with pyrogallol, this device allowed oxygen depletion to occur within a specific region of the microfluidic culture chamber. The geometry and dimensions of the hypoxic region inside a microfluidic chamber were controlled by features fabricated into the oxygen-impermeable layer. Oxygen tension as low as 0.5% could be achieved using this strategy. To prove the utility of this device, we demonstrated that hypoxia induced anaerobic metabolism in a group of liver cancer cells, and that neighboring cancer cells residing under normoxic conditions upregulated the expression of transporters for taking up lactate - a product of anaerobic respiration. The microfluidic devices described here may be broadly applicable for mimicking multiple physiological scenarios where oxygen tension varies on the length scale of tens of micrometers including the cancer microenvironment, liver zonation, and luminal microenvironment of the gut.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Oxigênio/análise , Oxigênio/metabolismo , Células CACO-2 , Técnicas de Cultura de Células/métodos , Hipóxia Celular , Desenho de Equipamento , Células Hep G2 , Humanos
6.
J Hepatol ; 69(3): 676-686, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29802947

RESUMO

BACKGROUND & AIMS: Macrophages contribute to liver disease, but their role in cholestatic liver injury, including primary sclerosing cholangitis (PSC), is unclear. We tested the hypothesis that macrophages contribute to the pathogenesis of, and are therapeutic targets for, PSC. METHODS: Immune cell profile, hepatic macrophage number, localization and polarization, fibrosis, and serum markers of liver injury and cholestasis were measured in an acute (intrabiliary injection of the inhibitor of apoptosis antagonist BV6) and chronic (Mdr2-/- mice) mouse model of sclerosing cholangitis (SC). Selected observations were confirmed in liver specimens from patients with PSC. Because of the known role of the CCR2/CCL2 axis in monocyte/macrophage chemotaxis, therapeutic effects of the CCR2/5 antagonist cenicriviroc (CVC), or genetic deletion of CCR2 (Ccr2-/- mice) were determined in BV6-injected mice. RESULTS: We found increased peribiliary pro-inflammatory (M1-like) and alternatively-activated (M2-like) monocyte-derived macrophages in PSC compared to normal livers. In both SC models, genetic profiling of liver immune cells identified a predominance of monocytes/macrophages; immunohistochemistry confirmed peribiliary monocyte-derived macrophage recruitment (M1>M2-polarized), which paralleled injury onset and was reversed upon resolution in acute SC mice. PSC, senescent and BV6-treated human cholangiocytes released monocyte chemoattractants (CCL2, IL-8) and macrophage-activating factors in vitro. Pharmacological inhibition of monocyte recruitment by CVC treatment or CCR2 genetic deletion attenuated macrophage accumulation, liver injury and fibrosis in acute SC. CONCLUSIONS: Peribiliary recruited macrophages are a feature of both PSC and acute and chronic murine SC models. Pharmacologic and genetic inhibition of peribiliary macrophage recruitment decreases liver injury and fibrosis in mouse SC. These observations suggest monocyte-derived macrophages contribute to the development of SC in mice and in PSC pathogenesis, and support their potential as a therapeutic target. LAY SUMMARY: Primary sclerosing cholangitis (PSC) is an inflammatory liver disease which often progresses to liver failure. The cause of the disease is unclear and therapeutic options are limited. Therefore, we explored the role of white blood cells termed macrophages in PSC given their frequent contribution to other human inflammatory diseases. Our results implicate macrophages in PSC and PSC-like diseases in mice. More importantly, we found that pharmacologic inhibition of macrophage recruitment to the liver reduces PSC-like liver injury in the mouse. These exciting observations highlight potential new strategies to treat PSC.


Assuntos
Quimiocina CCL2/metabolismo , Colangite Esclerosante , Imidazóis/farmacologia , Cirrose Hepática , Macrófagos , Receptores CCR2/metabolismo , Receptores CCR5/metabolismo , Animais , Antagonistas dos Receptores CCR5/farmacologia , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Colangite Esclerosante/tratamento farmacológico , Colangite Esclerosante/imunologia , Colangite Esclerosante/patologia , Modelos Animais de Doenças , Fígado/imunologia , Fígado/patologia , Cirrose Hepática/imunologia , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Sulfóxidos , Resultado do Tratamento
7.
Front Immunol ; 9: 2980, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619336

RESUMO

Background: The pathophysiology of non-alcoholic steatohepatitis involves hepatocyte lipotoxicity due to excess saturated free fatty acids and concomitant proinflammatory macrophage effector responses. These include the infiltration of macrophages into hepatic cords in response to incompletely understood stimuli. Stressed hepatocytes release an increased number of extracellular vesicles (EVs), which are known to participate in intercellular signaling and coordination of the behavior of immune cell populations via their cargo. We hypothesized that hepatocyte-derived lipotoxic EVs that are enriched in sphingosine 1-phosphate (S1P) are effectors of macrophage infiltration in the hepatic microenvironment. Methods: Lipotoxic EVs were isolated from palmitate treated immortalized mouse hepatocytes and characterized by nanoparticle tracking analysis. Lipotoxic EV sphingolipids were quantified using tandem mass spectrometry. Wildtype and S1P1 receptor knockout bone marrow-derived macrophages were exposed to lipotoxic EV gradients in a microfluidic gradient generator. Macrophage migration toward EV gradients was captured by time-lapse microscopy and analyzed to determine directional migration. Fluorescence-activated cell sorting along with quantitative PCR and immunohistochemistry were utilized to characterize the cell surface expression of S1P1 receptor on intrahepatic leukocytes and hepatic expression of S1P1 receptor, respectively. Results: Palmitate treatment induced the release of EVs. These EVs were enriched in S1P. Palmitate-induced S1P enriched EVs were chemoattractive to macrophages. EV S1P enrichment depended on the activity of sphingosine kinases 1 and 2, such that, pharmacological inhibition of sphingosine kinases 1 and 2 resulted in a significant reduction in EV S1P cargo without affecting the number of EVs released. When exposed to EVs derived from cells treated with palmitate in the presence of a pharmacologic inhibitor of sphingosine kinases 1 and 2, macrophages displayed diminished chemotactic behavior. To determine receptor-ligand specificity, we tested the migration responses of macrophages genetically deleted in the S1P1 receptor toward lipotoxic EVs. S1P1 receptor knockout macrophages displayed a marked reduction in their chemotactic responses toward lipotoxic palmitate-induced EVs. Conclusions:Palmitate-induced lipotoxic EVs are enriched in S1P through sphingosine kinases 1 and 2. S1P-enriched EVs activate persistent and directional macrophage chemotaxis mediated by the S1P1 receptor, a potential signaling axis for macrophage infiltration during hepatic lipotoxicity, and a potential therapeutic target for non-alcoholic steatohepatitis.


Assuntos
Vesículas Extracelulares/imunologia , Hepatócitos/imunologia , Lisofosfolipídeos/imunologia , Macrófagos/imunologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Esfingosina/análogos & derivados , Animais , Linhagem Celular , Quimiotaxia/imunologia , Dieta Aterogênica/efeitos adversos , Dieta da Carga de Carboidratos/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Técnicas de Inativação de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/imunologia , Fígado/patologia , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Palmítico/farmacologia , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/imunologia , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/imunologia , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
8.
Science ; 357(6351): 570-575, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28798125

RESUMO

Perturbation of the gut-associated microbial community may underlie many human illnesses, but the mechanisms that maintain homeostasis are poorly understood. We found that the depletion of butyrate-producing microbes by antibiotic treatment reduced epithelial signaling through the intracellular butyrate sensor peroxisome proliferator-activated receptor γ (PPAR-γ). Nitrate levels increased in the colonic lumen because epithelial expression of Nos2, the gene encoding inducible nitric oxide synthase, was elevated in the absence of PPAR-γ signaling. Microbiota-induced PPAR-γ signaling also limits the luminal bioavailability of oxygen by driving the energy metabolism of colonic epithelial cells (colonocytes) toward ß-oxidation. Therefore, microbiota-activated PPAR-γ signaling is a homeostatic pathway that prevents a dysbiotic expansion of potentially pathogenic Escherichia and Salmonella by reducing the bioavailability of respiratory electron acceptors to Enterobacteriaceae in the lumen of the colon.


Assuntos
Disbiose/metabolismo , Disbiose/microbiologia , Enterobacteriaceae/patogenicidade , Microbioma Gastrointestinal , Óxido Nítrico Sintase Tipo II/metabolismo , PPAR gama/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Anilidas/farmacologia , Animais , Antibacterianos/farmacologia , Butiratos/metabolismo , Células CACO-2 , Clostridium/efeitos dos fármacos , Clostridium/metabolismo , Colite/metabolismo , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Disbiose/induzido quimicamente , Disbiose/genética , Enterobacteriaceae/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Expressão Gênica , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Oxirredução , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Transdução de Sinais , Estreptomicina/farmacologia
9.
Stem Cells ; 34(6): 1501-12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26865369

RESUMO

It is important to understand the role played by endogenous signals in shaping stem cell fate decisions to develop better culture systems and to improve understanding of development processes. In this study, we describe the behavior of mouse embryonic stem cells (mESCs) inside microfluidic chambers (microchambers) operated under conditions of minimal perfusion. mESCs inside microchambers formed colonies and expressed markers of pluripotency in the absence of feeders or pluripotency-inducing signals such as leukemia inhibitory factor (LIF), while mESCs in standard cultureware differentiated rapidly. In a series of experiments, we demonstrate that remarkable differences in stem cell phenotype are due to endogenous production of LIF and other growth factors brought upon by cultivation in confines of a microchamber in the absence of perfusion (dilution). At the protein level, mESCs produced ∼140 times more LIF inside microchambers than under standard culture conditions. In addition, we demonstrate that pluripotent phenotype of stem cells could be degraded by increasing the height (volume) of the microchamber. Furthermore, we show that inhibition of LIF in microchambers, via the JAK/STAT3 pathway, leads to preferential differentiation into mesoderm that is driven by bone morphogenetic protein (BMP)-4. Collectively, we demonstrate for the first time that it is possible to design a cell culture system where stem cell fate is controlled solely by the endogenous signals. Our study may help shift the paradigm of stem cell cultivation away from relying on expensive exogenous molecules such as growth factors and toward designing culture chambers for harnessing endogenous signals. Stem Cells 2016;34:1501-1512.


Assuntos
Linhagem da Célula , Fator Inibidor de Leucemia/metabolismo , Microfluídica/instrumentação , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Transdução de Sinais , Animais , Biomarcadores/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Autorrenovação Celular , Células Cultivadas , Camadas Germinativas/citologia , Mesoderma/citologia , Camundongos , Modelos Biológicos , Fenótipo , Células-Tronco Pluripotentes/metabolismo
10.
Lab Chip ; 15(24): 4614-24, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26542093

RESUMO

Targeted cancer therapies are designed to deactivate signaling pathways used by cancer cells for survival. However, cancer cells are often able to adapt by activating alternative survival pathways, thereby acquiring drug resistance. An emerging theory is that autocrine or paracrine growth factor signaling in the cancer microenvironment represent an important mechanism of drug resistance. In the present study we wanted to examine whether paracrine interactions between groups of melanoma cells result in resistance to vemurafenib - an FDA approved drug targeting the BRAF mutation in metastatic melanoma. We used a vemurafenib-resistant melanoma model which secretes fibroblast growth factor (FGF)-2 to test our hypothesis that this is a key paracrine mediator of resistance to vemurafenib. Sensitive cells treated with media conditioned by resistant cells did not protect from the effects of vemurafenib. To query paracrine interactions further we fabricated a microfluidic co-culture device with two parallel compartments, separated by a 100 µm wide hydrogel barrier. The gel barrier prevented resorting/contact of cells while permitting paracrine cross-talk. In this microfluidic system, sensitive cells did become refractive to the effects of vemurafenib when cultured adjacent to resistant cells. Importantly, incorporation of FGF-2 capture probes into the gel barrier separating the two cell types prevented onset of resistance to vemurafenib. Microfluidic tools described here allow for more sensitive analysis of paracrine signals, may help better understand signaling in the cancer microenvironment and may enable development of more effective cancer therapies.


Assuntos
Técnicas de Cocultura/instrumentação , Resistencia a Medicamentos Antineoplásicos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Técnicas Analíticas Microfluídicas/instrumentação , Comunicação Parácrina/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Equipamento , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Indóis/farmacologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Sulfonamidas/farmacologia , Vemurafenib
11.
Biomicrofluidics ; 9(4): 044115, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26339315

RESUMO

Monocytes represent a class of immune cells that play a key role in the innate and adaptive immune response against infections. One mechanism employed by monocytes for sensing foreign antigens is via toll-like receptors (TLRs)-transmembrane proteins that distinguish classes of foreign pathogens, for example, bacteria (TLR4, 5, and 9) vs. fungi (TLR2) vs. viruses (TLR3, 7, and 8). Binding of antigens activates a signaling cascade through TLR receptors that culminate in secretion of inflammatory cytokines. Detection of these cytokines can provide valuable clinical data for drug developers and disease investigations, but this usually requires a large sample volume and can be technically inefficient with traditional techniques such as flow cytometry, enzyme-linked immunosorbent assay, or luminex. This paper describes an approach whereby antibody arrays for capturing cells and secreted cytokines are encapsulated within a microfluidic device that can be reconfigured to operate in serial or parallel mode. In serial mode, the device represents one long channel that may be perfused with a small volume of minimally processed blood. Once monocytes are captured onto antibody spots imprinted into the floor of the device, the straight channel is reconfigured to form nine individually perfusable chambers. To prove this concept, the microfluidic platform was used to capture monocytes from minimally processed human blood in serial mode and then to stimulate monocytes with different TLR agonists in parallel mode. Three cytokines, tumor necrosis factor-α, interleukin (IL)-6, and IL-10, were detected using anti-cytokine antibody arrays integrated into each of the six chambers. We foresee further use of this device in applications such as pediatric immunology or drug/vaccine testing where it is important to balance small sample volume with the need for high information content.

12.
Integr Biol (Camb) ; 7(7): 815-24, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26108037

RESUMO

Cancer, developmental biology and tissue injury present multiple examples where groups of cells residing in close proximity communicate via paracrine factors. It is nearly impossible to dissect such cellular interactions in vivo and is quite challenging in vitro. The goal of this study is to utilize a reconfigurable microfluidic device in order to study paracrine signal exchange between groups of primary hepatocytes in vitro. Previously, we demonstrated that hepatocytes residing on protein spots containing collagen and hepatocyte growth factor (HGF) spots expressed epithelial (hepatic) phenotypes and also rescued them in neighboring hepatocytes on collagen spots that did not receive direct HGF stimulus. Herein, we designed a microfluidic device with parallel fluidic channels separated by retractable (reconfigurable) walls and employed this device to investigate interactions between groups of HGF-stimulated and unstimulated hepatocytes. Using a novel reconfigurable microfluidic device, we demonstrate that cultivation of HGF-containing protein spots upregulates the production of endogenous HGF in hepatocytes and that these HGF molecules diffuse over, causing phenotype enhancement in the recipient cells. We also show that selective treatment of the recipient hepatocytes with a c-met inhibitor (SU11274) diminishes the rescue effect, as gauged by the down-regulation of albumin and HGF expression. Our study is one of the first to demonstrate paracrine signaling via HGF in primary hepatocytes. More broadly, tools and methods described here may be used to study paracrine signaling in other types of cells and will have relevance for various fields of biomedical research from cancer to immunology.


Assuntos
Comunicação Autócrina/fisiologia , Separação Celular/instrumentação , Análise de Injeção de Fluxo/instrumentação , Hepatócitos/fisiologia , Dispositivos Lab-On-A-Chip , Comunicação Parácrina/fisiologia , Animais , Anistreplase , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Hepatócitos/citologia , Ratos , Ratos Endogâmicos Lew
13.
Lab Chip ; 15(3): 637-41, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25421651

RESUMO

We developed a micropatterned photodegradable hydrogel array integrated with reconfigurable microfluidics to enable cell secretion analysis and cell retrieval at the single-cell level. The activity of protease molecules secreted from single cells was monitored using FRET peptides entrapped inside microfabricated compartments. Antibody-modified gel islands tethering cells to the surface could be degraded by UV exposure to release specific single cells of interest.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Anticorpos/imunologia , Antígenos CD4/imunologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Tamanho da Partícula , Peptídeos/química , Processos Fotoquímicos , Propriedades de Superfície , Células U937
14.
Lab Chip ; 14(10): 1695-704, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24700096

RESUMO

We report the development of a microsystem integrating anti-TNF-α aptasensors with vacuum-actuatable microfluidic devices that may be used to monitor intercellular communications. Actuatable chambers were used to expose to mitogen a group of ~600 cells while not stimulating another group of monocytes only 600 µm away. Co-localizing groups of cells with miniature 300 µm diameter aptamer-modified electrodes enabled monitoring of TNF-α release from each group independently. The microsystem allowed observation of the sequence of events that included 1) mitogenic activation of the first group of monocytes to produce TNF-α, 2) diffusion of TNF-α to the location of the second group of cells and 3) activation of the second group of cells resulting in the production of TNF-α by these cells. Thus, we were able to experimentally verify reciprocal paracrine crosstalk between the two groups of cells secreting the same signalling molecule. Given the prevalence of such cellular communications during injury, cancer or immune response and the dearth of available monitoring techniques, the microsystem described here is envisioned to have significant impact on cell biology.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Eletroquímicas/métodos , Técnicas Analíticas Microfluídicas/métodos , Fator de Necrose Tumoral alfa/análise , Aptâmeros de Nucleotídeos/química , Células Cultivadas , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Humanos , Azul de Metileno/química , Técnicas Analíticas Microfluídicas/instrumentação , Monócitos/citologia , Monócitos/metabolismo , Oxirredução , Comunicação Parácrina , Ligação Proteica , Fator de Necrose Tumoral alfa/metabolismo , Células U937
15.
Anal Chem ; 85(24): 11893-901, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24255999

RESUMO

Matrix metalloproteinases (MMPs) play a central role in the breakdown of the extracellular matrix and are typically upregulated in cancer cells. The goal of the present study is to develop microwells suitable for capture of cells and detection of cell-secreted proteases. Hydrogel microwells comprised of poly(ethylene glycol) (PEG) were photopatterned on glass and modified with ligands to promote cell adhesion. To sense protease release, peptides cleavable by MMP9 were designed to contain a donor/acceptor FRET pair (FITC and DABCYL). These sensing molecules were incorporated into the walls of the hydrogel wells to enable a detection scheme where cells captured within the wells secreted protease molecules which diffused into the gel, cleaved the peptide, and caused a fluorescence signal to come on. By challenging sensing hydrogel microstructures to known concentrations of recombinant MMP9, the limit of detection was determined to be 0.625 nM with a linear range extending to 40 nM. To enhance sensitivity and to limit cross-talk between adjacent sensing sites, microwell arrays containing small groups (∼20 cells/well) of lymphoma cells were integrated into reconfigurable PDMS microfluidic devices. Using this combination of sensing hydrogel microwells and reconfigurable microfluidics, detection of MMP9 release from as few as 11 cells was demonstrated. Smart hydrogel microstructures capable of sequestering small groups of cells and sensing cell function have multiple applications ranging from diagnostics to cell/tissue engineering. Further development of this technology will include single-cell analysis and function-based cell sorting capabilities.


Assuntos
Hidrogéis , Metaloproteinase 9 da Matriz/metabolismo , Técnicas Analíticas Microfluídicas/métodos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Fluoresceína-5-Isotiocianato/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Proteólise , p-Dimetilaminoazobenzeno/análogos & derivados , p-Dimetilaminoazobenzeno/química
16.
Anal Chem ; 85(1): 220-7, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23181468

RESUMO

Matrix metalloproteinases (MMPs) regulate composition of the extracellular matrix and play a critical role in cancer, fibrosis, and wound healing. This article describes a novel peptide-based electrochemical biosensor for detecting activity of cell-secreted protease MMP9. In this sensing strategy, a peptide specific to MMP9 was modified with a redox label (methylene blue (MB)) and immobilized on microfabricated 300 µm diameter Au electrodes. Challenging the electrodes with known concentrations of MMP9 resulted in the cleavage of the MB containing peptide fragment and caused a decrease in electrical signal measured by square wave voltammetry (SWV). The limit of detection for MMP9 was determined to be 60 pM with a linear range extending to 50 nM. In preparation to detect cell-secreted MMP9, glass surfaces with Au electrode arrays were further micropatterned with poly(ethylene glycol) (PEG) gel to define annular cell adhesive regions next to electrodes and render the remainder of the surface nonfouling. The surfaces were further modified with CD14 antibody to promote attachment of monocytes. The peptide-modified electrode arrays were integrated into PDMS microfluidic devices and incubated with U-937 cells, transformed monocytes known to produce MMPs. These studies revealed a 3-fold higher electrochemical signal from ∼400 activated monocytes after 10 min activation compared to nonactivated monocytes. Whereas this article focuses on MMP9 detection, the general strategy of employing redox-labeled peptides on electrodes should be broadly applicable for detection of other proteases and should have clinical as well as basic science applications.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Metaloproteinase 9 da Matriz/análise , Peptídeos/metabolismo , Linhagem Celular Tumoral , Eletrodos , Géis/química , Ouro/química , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Técnicas Analíticas Microfluídicas , Oxirredução , Peptídeos/química , Polietilenoglicóis/química
17.
Anal Chem ; 84(4): 2017-24, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22229858

RESUMO

Through integration of a MOSFET-based microfluidic Coulter counter with a dc-dielectrophoretic cell sorter, we demonstrate simultaneous on-chip cell separation and sizing with three different samples including 1) binary mixtures of polystyrene beads, 2) yeast cells of continuous size distribution, and 3) mixtures of 4T1 tumor cells and murine bone marrow cells. For cells with continuous size distribution, it is found that the receiver operator characteristic analysis is an ideal method to characterize the separation performance. The characterization results indicate that dc-DEP separation performance degrades as the sorting throughput (cell sorting rate) increases, which provides insights into the design and operation of size-based microfluidic cell separation.


Assuntos
Células da Medula Óssea/citologia , Separação Celular/instrumentação , Eletroforese em Microchip/instrumentação , Neoplasias Mamárias Experimentais/química , Técnicas Analíticas Microfluídicas , Saccharomyces cerevisiae/química , Animais , Células Cultivadas , Feminino , Citometria de Fluxo , Camundongos , Microesferas , Análise de Sequência com Séries de Oligonucleotídeos , Poliestirenos/química
18.
Biomed Microdevices ; 13(3): 539-48, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21424383

RESUMO

A versatile microfluidic platform allowing co-culture of multiple cell populations in close proximity with separate control of their microenvironments would be extremely valuable for many biological applications. Here, we report a simple and compact microfluidic platform that has these desirable features and allows for real-time, live-cell imaging of cell-cell interactions. Using a pneumatically/hydraulically controlled poly(dimethylsiloxane) (PDMS) valve barrier, distinct cell types can be cultured in side-by-side microfluidic chambers with their optimum culture media and treated separately without affecting the other cell population. The platform is capable of both two-dimensional and three-dimensional cell co-culture and through variations of the valve barrier design, the platform allows for cell-cell interactions through either direct cell contact or soluble factors alone. The platform has been used to perform dynamic imaging of synapse formation in hippocampal neurons by separate transfection of two groups of neurons with fluorescent pre- and post-synaptic protein markers. In addition, cross-migration of 4T1 tumor cells and endothelial cells has been studied under normoxic and hypoxic conditions, which revealed different migration patterns, suggesting the importance of the microenvironments in cell-cell interactions and biological activities.


Assuntos
Técnicas de Cocultura/instrumentação , Células Endoteliais/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Neurônios/citologia , Animais , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Dimetilpolisiloxanos/química , Humanos , Hidrodinâmica , Camundongos , Pressão , Sefarose/química
19.
Cancer Res ; 71(3): 976-87, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21148069

RESUMO

It is well known that tumor-derived proangiogenic factors induce neovascularization to facilitate tumor growth and malignant progression. However, the concept of "angiocrine" signaling, in which signals produced by endothelial cells elicit tumor cell responses distinct from vessel function, has been proposed, yet remains underinvestigated. Here, we report that angiocrine factors secreted from endothelium regulate tumor growth and motility. We found that Slit2, which is negatively regulated by endothelial EphA2 receptor, is one such tumor suppressive angiocrine factor. Slit2 activity is elevated in EphA2-deficient endothelium. Blocking Slit activity restored angiocrine-induced tumor growth/motility, whereas elevated Slit2 impaired growth/motility. To translate our findings to human cancer, we analyzed EphA2 and Slit2 expression in human cancer. EphA2 expression inversely correlated with Slit2 in the vasculature of invasive human ductal carcinoma samples. Moreover, analysis of large breast tumor data sets revealed that Slit2 correlated positively with overall and recurrence-free survival, providing clinical validation for the tumor suppressor function for Slit2 in human breast cancer. Together, these data support a novel, clinically relevant mechanism through which EphA2 represses Slit2 expression in endothelium to facilitate angiocrine-mediated tumor growth and motility by blocking a tumor suppressive signal.


Assuntos
Neoplasias da Mama/irrigação sanguínea , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Mamárias Experimentais/irrigação sanguínea , Proteínas do Tecido Nervoso/metabolismo , Receptor EphA2/metabolismo , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Processos de Crescimento Celular/fisiologia , Movimento Celular/fisiologia , Células Endoteliais/patologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA