RESUMO
Mesenchymal stem cells (MSCs) therapy is a highly researched treatment that has the potential to promote immunomodulation and anti-inflammatory, anti-apoptotic, and antimicrobial activities. It is thought that it can enhance internal organ function, reverse tissue remodeling, and achieve significant organ repair and regeneration. However, the limited infusion, survival, and engraftment of transplanted MSCs diminish the effectiveness of MSCs-based therapy. Consequently, various preconditioning methods have emerged as strategies for enhancing the therapeutic effects of MSCs and achieving better clinical outcomes. In particular, the use of natural small molecule compounds (NSMs) as a pretreatment strategy is discussed in this narrative review, with a focus on their roles in regulating MSCs for injury repair in vital internal organs. Additionally, the discussion focuses on the future directions and challenges of transforming mesenchymal stem cell research into clinical applications.
Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Cicatrização/efeitos dos fármacosRESUMO
Objective: MRPS24 (Mitochondrial Ribosomal Protein S24) belongs to the mitochondrial ribosomal protein family, which participates in the protein synthesis of the mitochondrion. However, the relationship of MRPS24 with lung adenocarcinoma (LUAD) remained unknown. We aimed to identify its immunological and functional mechanisms in LUAD. Methods: The analysis of MRPS24 expression, clinical features, diagnosis, prognosis, function analysis, genetic alteration, copy number variations, methylation, and tumor microenvironment was investigated by the TCGA, UCSC Xena, GEO, HPA, GEPIA, cBioPortal, MethSurv, TIMER, TIMER2.0, and TISIDB databases. Results: MRPS24 was found to be more abundant in LUAD tumor tissue than in normal tissue. High levels of MRPS24 expression were found to be an independent prognostic factor by multivariate analysis. Functional analysis revealed that MRPS24 expression was associated with the immune, cell cycle and methylation. MRPS24 methylation level was inversely linked with its expression (p < 0.001). Patients with low MRPS24 methylation had a worse prognosis than those with high methylation (p < 0.05). In addition, the result revealed that the MRPS24 expression was inversely linked to the immune cell infiltration in LUAD. Finally, the validations of the expression level, prognosis, and immune cell infiltration of MRPS24 were in accordance with our previous results. Conclusions: This study systematically explored that MRPS24 expression was significantly correlated with prognosis, tumorigenesis, genetic alteration, copy number variations, methylation, and immune cell infiltration in LUAD. MRPS24 might be a potential immune-related biomarker in the development and treatment of LUAD, thereby acting as a promising predictor of immunotherapy response in LUAD.
RESUMO
Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic swine coronavirus that causes diarrhea and high mortality in piglets, resulting in significant economic losses within the global swine industry. Nonstructural protein 3 (Nsp3) is the largest in coronavirus, playing critical roles in viral replication, such as the processing of polyproteins and the formation of replication-transcription complexes (RTCs). In this study, three monoclonal antibodies (mAbs), 7G4, 5A3, and 2D7, targeting PEDV Nsp3 were successfully generated, and three distinct linear B-cell epitopes were identified within these mAbs by using Western blotting analysis with 24 truncations of Nsp3. The epitope against 7G4 was located on amino acids 31-TISQDLLDVE-40, the epitope against 5A3 was found on amino acids 141-LGIVDDPAMG-150, and the epitope against 2D7 was situated on amino acids 282-FYDAAMAIDG-291. Intriguingly, the epitope 31-TISQDLLDVE-40 recognized by the mAb 7G4 appears to be a critical B-cell linear epitope due to its high antigenic index and exposed location on the surface of Nsp3 protein. In addition, bioinformatics analysis unveiled that these three epitopes were highly conserved in most genotypes of PEDV. These findings present the first characterization of three novel linear B-cell epitopes in the Nsp3 protein of PEDV and provide potential tools of mAbs for identifying host proteins that may facilitate viral infection.
Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Epitopos de Linfócito B , Anticorpos Monoclonais , Vírus da Diarreia Epidêmica Suína/genética , Western Blotting , AminoácidosRESUMO
Since late 2011, the PRV variants have emerged in China, characterized by the increased virulence. The traditional attenuated vaccines have proven insufficient in providing complete protection, resulting in substantial economic losses to swine industry. In this study, a vaccine candidate strain, ZJ01-ΔgI/gE/TK/UL21, carrying the quadruple gene deletion was derived from the previously generated three gene-deleted virus ZJ01-ΔgI/gE/TK. As anticipated, piglets inoculated with ZJ01-ΔgI/gE/TK/UL21 exhibited normal body temperatures and showed no viral shedding, consistent with the observations from piglets treated with ZJ01-ΔgI/gE/TK. Importantly, a significant higher level of interferon induction was observed among piglets in the ZJ01-ΔgI/gE/TK/UL21 group compared to those in the ZJ01-ΔgI/gE/TK group. Upon challenge with the PRV variant ZJ01, piglets immunized with ZJ01-ΔgI/gE/TK/UL21 exhibited reduced viral shedding compared to the ZJ01-ΔgI/gE/TK group. Furthermore, piglets vaccinated with ZJ01-ΔgI/gE/TK/UL21 exhibited minimal pathological lesions in brain tissues, similar to those in the ZJ01-ΔgI/gE/TK group. These results underscore the potential of ZJ01-ΔgI/gE/TK/UL21 as a promising vaccine for controlling PRV infection.
Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Suínos , Animais , Virulência , Proteínas do Envelope Viral/genética , Vacinas Atenuadas , Vacinas contra PseudorraivaRESUMO
Chinese herbal medicine is complex and has numerous unknown compounds, making qualitative research crucial. Ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) is the most widely used method in qualitative analysis of compounds. The method includes standardized and programmed protocols for sample pretreatment, MS tune, MS acquisition, and data processing. The sample pretreatments include collection, pulverization, solvent extraction, ultrasound, centrifugation, and filtration. Data post-processing was described in detail and includes data importing, self-established database construction, method establishment, data processing, and other manual operations. The above-ground part of the alpine yarrow herb, Achillea millefolium L., is used to treat inflammation, gastrointestinal disturbances, and pain and its 3-oxa-guaianolides could be useful leads for anti-inflammatory drug development. Three representative compounds in AML were identified, combining TOF-MS with a self-established database. Moreover, the differences from existing literature, liquid-phase parameter optimization, scan mode selection, ion source suitability, collision energy adjustment, isomer screening, method limitation, and possible solutions were discussed. This standardized analysis method is universal and can be applied to identify complex compounds in Chinese herbal medicine.
Assuntos
Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão , Centrifugação , Bases de Dados Factuais , Espectrometria de MassasRESUMO
The African swine fever virus (ASFV) is one of the most important pathogens that causes huge damage to worldwide swine production. The pI215L protein is found within the virion and expressed at a high level in infected porcine alveolar macrophages (PAMs), indicating a possible role of pI215L protein in ASFV detection and surveillance. In the present study, female BALB/c mice (5-6-week-old) were immunized with rpI215L protein, and six hybridomas, 1C1, 2F6, 2F10, 3C8, 5E1 and 5B3, steadily secreted anti-pI215L monoclonal antibodies (mAbs). Among them, 1C4, 5E1, and 5B3 had the IgG1 isotype with a Lambda light chain, 2F10 and 3C8 had the IgG1 isotype with a Kappa light chain, and 2F6 had the IgG2a isotype with a Kappa light chain. Western blot showed a good reactivity of the six mAbs against ASFV. Eight truncated polypeptides were produced for epitope mapping. Two novel B cell epitopes, 67LTFTSEMWHPNIYS80 and 167IEYFKNAASN176, were identified by the mAbs. Further analysis revealed that 2F6 mAb could be widely used in ASFV surveillance and 5B3 mAb might serve as a tool in the distinguishment of different ASFV genotypes. This study provides tools of monoclonal antibodies for further study of I215L function and contributes to the development of serological diagnosis and vaccine research.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Camundongos , Suínos , Feminino , Animais , Vírus da Febre Suína Africana/genética , Anticorpos Monoclonais , Mapeamento de Epitopos , Imunoglobulina GRESUMO
African swine fever virus (ASFV) is a most important pathogen which causes huge damage in swine production in the world. pC129R protein is one of the most abundant ASFV proteins in infected Vero cells and WSL-HP cells, which consequently could be a target for ASF detection and surveillance. In this study, 5-6-week-old female BALB/c mice were immunized with rpC129R protein expressed by a prokaryotic system. And three hybridomas, 1B1, 1B4 and 4H4, steadily secreted anti-pC129R monoclonal antibodies were screened by an indirect enzyme linked immunosorbent assay (ELISA). Among them, 1B4 and 4H4 had IgG2a isotype with Kappa light chain, while 1B1 had IgG1 isotype with Kappa light chain. Western blot and indirect immunofluorescence assay showed that three monoclonal antibodies (mAbs) specifically reacted with ASFV. Epitope mapping was performed with truncated polypeptides. And a new B cell epitope, 18KHYVLIPK25 was identified by the mAbs, which was highly conserved in most genotypes of ASFV. These findings not only provide a monoclonal antibody tool for further study of the function of C129R, but also lay the foundation for serological diagnosis and vaccine development.
Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Camundongos , Chlorocebus aethiops , Suínos , Feminino , Animais , Vírus da Febre Suína Africana/genética , Anticorpos Monoclonais , Epitopos de Linfócito B , Células Vero , Anticorpos AntiviraisRESUMO
Tripartite motif-containing protein 7 (TRIM7), the member of tripartite motif (TRIM) family, plays an important role in innate immune responses against viral infection. Among them, the function of TRIM7 in Encephalomyocarditis virus (EMCV) infection has not been reported. Here, we found that TRIM7 inhibited the replication of EMCV through the type I interferon (IFN) signaling pathway. Interestingly, TRIM7 was down-regulated after EMCV infection in HEK293T cells. Further, overexpression of TRIM7 suppressed the replication of EMCV in HEK293T cells and enhanced the activity of IFN-ß promoter. On the other hand, knockdown of the endogenous TRIM7 promoted EMCV infection and impaired the activity of IFN-ß promoter. TRIM7 could regulate retinoic acid-inducible gene I (RIG-I)/ melanoma differentiation-associated gene 5 (MDA5)/ mitochondrial antiviral-signaling protein (MAVS) mediated IFN-ß signaling pathway. Moreover, TRIM7 interacted with MAVS and they were co-located in HEK293T cells. We demonstrate that TRIM7 plays a positive role in IFN-ß signaling pathway during EMCV infection and suppresses EMCV replication. Taken together, the presented results suggest that TRIM7 has a pivotal function in anti-EMCV infection, thereby providing a potential target for further development of anti-EMCV inhibitors.
Assuntos
Vírus da Encefalomiocardite , Interferon beta , Animais , Humanos , Vírus da Encefalomiocardite/genética , Células HEK293 , Imunidade Inata , Interferon beta/metabolismo , Transdução de Sinais , Replicação ViralRESUMO
Peroxiredoxin 1 (PRDX1) is a cellular antioxidant enzyme that is crucial for diverse fundamental biological processes, such as autophagy, inflammation, and carcinogenesis. However, molecular mechanisms underpinning its diverse roles are not well understood. Here, we report that PRDX1 positively regulates interferon (IFN) induction and that pseudorabies virus (PRV) targets PRDX1 to evade IFN induction. PRV UL13 encodes a serine/threonine kinase important for PRV infection, although its biological function remains obscure. We identified PRDX1 as a UL13-interacting protein. Virological and biochemical assays demonstrate that PRDX1 promotes IFN induction by interacting with TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε). Conversely, UL13 accelerates PRDX1 degradation via the ubiquitin-proteosome pathway in a kinase-dependent manner. In doing so, PRV inhibits IFN induction during productive infection, which requires PRDX1 expression. This study uncovers an essential role of PRDX1 in the innate immune response and reveals a new viral immune evasion strategy to counteract cellular defenses. IMPORTANCE PRV interacts with numerous cellular proteins during productive infection. Here, we demonstrated the interaction of viral protein UL13 with the antioxidant enzyme PRDX1, which functions in multiple signal transduction pathways. We found that PRDX1 participates in the type I IFN pathway by interacting with TBK1 and IKKε, thereby negatively regulating PRV propagation. However, UL13 ubiquitinates PRDX1, which routes PRDX1 into proteasomes for degradation and effectively reduces its expression. These results illuminate the fundamental role that PRDX1 plays in the IFN pathway, and they identify a potential target for the control of PRV infection.
Assuntos
Herpesvirus Suídeo 1/fisiologia , Quinase I-kappa B/metabolismo , Imunidade Inata , Peroxirredoxinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Células HEK293 , Herpesvirus Suídeo 1/imunologia , Humanos , Evasão da Resposta Imune , Interferon Tipo I/biossíntese , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Ubiquitinação , Proteínas Virais/genética , Replicação ViralRESUMO
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important endemic swine pathogens, causing enormous losses in the global swine industry. Commercially available vaccines only partially prevent or counteract the virus infection and correlated losses. PRRSV's replication mechanism has not been well understood. In this study, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was screened to bind with the viral major envelope glycoprotein 5 (GP5) after PRRSV infection. The interacting sites are located within a 13-amino-acid (aa) region (aa 93 to 105) of GP5 and at Lys227 of GAPDH. Interestingly, viral GP5 restricts the translocation of GAPDH from the cytoplasm to the nucleus. Moreover, cytoplasmic GAPDH facilitates PRRSV replication by virtue of its glycolytic activity. The results suggest that PRRSV GP5 restricts GAPDH to the nucleus and exploits its glycolytic activity to stimulate virus replication. The data provide insight into the role of GAPDH in PRRSV replication and reveal a potential target for controlling viral infection. IMPORTANCE PRRSV poses a severe economic threat to the pig industry. PRRSV GP5, the major viral envelope protein, plays an important role in viral infection, pathogenicity, and immunity. However, interactions between GP5 and host proteins have not yet been well studied. Here, we show that GAPDH interacts with GP5 through binding a 13-aa sequence (aa 93 to 105) in GP5, while GP5 interacts with GAPDH at the K277 amino acid residue of GAPDH. We demonstrate that GP5 interacts with GAPDH in the cytoplasm during PPRSV infection, inhibiting GAPDH entry into the nucleus. PRRSV exploits the glycolytic activity of GAPDH to promote viral replication. These results enrich our understanding of PRRSV infection and pathogenesis and open a new avenue for antiviral prevention and PRRSV treatment strategies.
Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Animais , Gliceraldeído-3-Fosfato Desidrogenases/genética , Células HEK293 , Humanos , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Proteínas do Envelope Viral/genéticaRESUMO
Expressions and clinical implications of cancer-testis antigen (CTA) lactate dehydrogenase (LDH)-C4 in hepatocellular carcinoma (HCC) have not been fully elucidated. Herein, expressions of LDHC mRNA in the serum and serum-derived exosomes of early-stage HCC patients were determined using qRT-PCR, and the expression of LDH-C4 protein in HCC tissues was detected using high-throughput tissue microarray analysis. It was found that positive rates of LDHC mRNA expressions in the serum and serum exosomes of HCC patients were 68% and 60%, respectively. The AUCs of serum and exosomal LDHC in differentiating HCC patients from healthy controls were 0.8382 and 0.9451, respectively. The serum and exosomal LDHC levels in HCC patients in the treatment group were higher than the levels in the preliminary diagnosis group, but lower than those in the recurrence group. Survival analysis showed that the expression of LDH-C4 was negatively correlated with the prognosis of HCC. The Cox regression analysis showed that an LDH-C4 level was an independent risk factor for the prognosis of HCC patients. Therefore, serum and exosomal LDHC can be used as a biomarker for early diagnosis, efficacy evaluation and recurrence prediction of HCC. Moreover, LDH-C4 can be used as an important reference indicator for monitoring the prognosis of HCC.
RESUMO
Encephalomyocarditis virus (EMCV) infects many mammalian species, causing myocarditis, encephalitis and reproductive disorders. The small interference RNA (siRNA) targeting to the virus has not been understood completely. Here, two out of six interference sequences were screened to inhibit significantly EMCV replication by using recombinant plasmids expressing small hairpin RNA (shRNA) targeting to the viral 1C or 2A genes in BHK-21 cells. And two recombinant adenoviruses expressing the shRNAs were constructed and named as rAd-1C-1 and rAd-2A-3. They inhibit EMCV replication in BHK-21 cells in protein levels, as well as the virus yields by approximately 1000 times. Furthermore, they provide high protective efficacy against the challenge with virulent EMCV NJ08 strain in mice. And the EMCV loads in the live mice in rAd-1C-1 and rAd-2A-3 groups decrease by more than 90 % compared with those in the dead mice in the challenge control groups at the same times. It indicates that the adenoviruses medicated shRNA targeting to 1C and 2A genes might provide a potential strategy for combating EMCV infection.
Assuntos
Vírus da Encefalomiocardite/genética , Genes Virais , Interferência de RNA , Replicação Viral/genética , Adenoviridae/genética , Animais , Linhagem Celular , Vírus da Encefalomiocardite/fisiologia , Feminino , Vetores Genéticos , Camundongos , Camundongos Endogâmicos BALB C , RNA Interferente Pequeno/genética , Carga ViralRESUMO
To investigate the protective effect of ethanol extract of Gynura bicolor (GB) against UVB-induced photodamage of skin and the possible mechanisms. DPPH (1,1-diphenyl-2-pico radical) test was used to detect the antioxidant capacity of ethanol extract of Gynura bicolor (GB). The protective effects of GB against UVB irritation were detected both in Hacat cells and photodamage rat models. UVB irradiation could inhibit viability and induce apoptosis of Hacat cells in a dose-dependent manner. The pretreatment of Hacat cells by GB could obviously reverse the effects in a dose-dependent manner. The mRNA and protein expressions of p53, Bax, caspase-3 were increased, while anti-apoptotic protein Bcl-2 was decreased and this effect could be reversed by GB pretreatment in a dose-dependent manner. In vivo, the application of GB could alleviate the skin damage of SD rats and improve the superficial inflammation of the dermis as well as inhibit the expressions of P53 and Caspase-3 induced by UVB irradiation. Ethanol extract of Gynura bicolor could protect the photodamage of human Hacat keratinocytes and SD rats against UVB irradiation by inhibiting P53-mediated Bcl-2/ BAX/Casaspe-3 apoptosis pathway.
Assuntos
Asteraceae/química , Etanol/química , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismoRESUMO
Chicken Na+/H+ exchanger type I (chNHE1), a multispan transmembrane protein, is a cellular receptor of the subgroup J avian leukosis virus (ALV-J). To identify the functional determinants of chNHE1 responsible for the ALV-J receptor activity, a series of chimeric receptors was created by exchanging the extracellular loops (ECL) of human NHE1 (huNHE1) and chNHE1 and by ECL replacement with a hemagglutinin (HA) tag. These chimeric receptors then were used in binding and entry assays to map the minimal ALV-J gp85-binding domain of chNHE1. We show that ECL1 of chNHE1 (chECL1) is the critical functional ECL that interacts directly with ALV-J gp85; ECL3 is also involved in ALV-J gp85 binding. Amino acid residues 28 to 39 of the N-terminal membrane-proximal region of chECL1 constitute the minimal domain required for chNHE1 binding of ALV-J gp85. These residues are sufficient to mediate viral entry into ALV-J nonpermissive cells. Point mutation analysis revealed that A30, V33, W38, and E39 of chECL1 are the key residues mediating the binding between chNHE1 and ALV-J gp85. Further, the replacement of residues 28 to 39 of huNHE1 with the corresponding chNHE1 residues converted the nonfunctional ALV-J receptor huNHE1 to a functional one. Importantly, soluble chECL1 and huECL1 harboring chNHE1 residues 28 to 39 both could effectively block ALV-J infection. Collectively, our findings indicate that residues 28 to 39 of chNHE1 constitute a domain that is critical for receptor function and mediate ALV-J entry.IMPORTANCE chNHE1 is a cellular receptor of ALV-J, a retrovirus that causes infections in chickens and serious economic losses in the poultry industry. Until now, the domains determining the chNHE1 receptor function remained unknown. We demonstrate that chECL1 is critical for receptor function, with residues 28 to 39 constituting the minimal functional domain responsible for chNHE1 binding of ALV-J gp85 and efficiently mediating ALV-J cell entry. These residues are located in the membrane-proximal region of the N terminus of chECL1, suggesting that the binding site of ALV-J gp85 on chNHE1 is probably located on the apex of the molecule; the receptor-binding mode might be different from that of retroviruses. We also found that soluble chECL1, as well as huECL1 harboring chNHE1 residues 28 to 39, effectively blocked ALV-J infection. These findings contribute to a better understanding of the ALV-J infection mechanism and also provide new insights into the control strategies for ALV-J infection.
Assuntos
Aminoácidos/química , Vírus da Leucose Aviária/metabolismo , Receptores Virais/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Ligação Viral , Internalização do Vírus , Aminoácidos/metabolismo , Animais , Leucose Aviária/virologia , Vírus da Leucose Aviária/química , Vírus da Leucose Aviária/genética , Galinhas , Humanos , Mutação Puntual , Receptores Virais/genética , Trocadores de Sódio-Hidrogênio/genéticaRESUMO
Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus causing hemangiomas and myeloid tumors in chickens. Interleukin-6 (IL-6) is a multifunctional pro-inflammatory interleukin involved in many types of cancer. We previously demonstrated that IL-6 expression was induced following ALV-J infection in chickens. The aim of this study is to characterize the mechanism by which ALV-J induces IL-6 expression, and the role of IL-6 in tumor development. Our results demonstrate that ALV-J infection increases IL-6 expression in chicken splenocytes, peripheral blood lymphocytes, and vascular endothelial cells. IL-6 production is induced by the ALV-J envelope protein gp85 and capsid protein p27 via PI3K- and NF-κB-mediated signaling. IL-6 in turn induced expression of vascular endothelial growth factor (VEGF)-A and its receptor, VEGFR-2, in vascular endothelial cells and embryonic vascular tissues. Suppression of IL-6 using siRNA inhibited the ALV-J induced VEGF-A and VEGFR-2 expression in vascular endothelial cells, indicating that the ALV-J-induced VEGF-A/VEGFR-2 expression is mediated by IL-6. As VEGF-A and VEGFR-2 are important factors in oncogenesis, our findings suggest that ALV-J hijacks IL-6 to promote tumorigenesis, and indicate that IL-6 could potentially serve as a therapeutic target in ALV-J infections.
Assuntos
Vírus da Leucose Aviária/metabolismo , Leucose Aviária/enzimologia , Células Endoteliais/enzimologia , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Baço/enzimologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Leucose Aviária/genética , Leucose Aviária/virologia , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/patogenicidade , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Transformação Celular Viral , Células Cultivadas , Galinhas , Células Endoteliais/virologia , Interações Hospedeiro-Patógeno , Interleucina-6/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Baço/virologia , Fatores de Tempo , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismoRESUMO
Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV.
Assuntos
Metapneumovirus/metabolismo , Tripsina/metabolismo , Proteínas Virais de Fusão/química , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Cricetinae , Concentração de Íons de Hidrogênio , Fusão de Membrana , Metapneumovirus/genética , Mutagênese , Mutação , Células VeroRESUMO
The entry of enveloped viruses into host cells requires the fusion of viral and cell membranes. These membrane fusion reactions are mediated by virus-encoded glycoproteins. In the case of avian metapneumovirus (aMPV), the fusion (F) protein alone can mediate virus entry and induce syncytium formation in vitro. To investigate the fusogenic activity of the aMPV F protein, we compared the fusogenic activities of three subtypes of aMPV F proteins using a TCSD50 assay developed in this study. Interestingly, we found that the F protein of aMPV subtype B (aMPV/B) strain VCO3/60616 (aMPV/vB) was hyperfusogenic when compared with F proteins of aMPV/B strain aMPV/f (aMPV/fB), aMPV subtype A (aMPV/A), and aMPV subtype C (aMPV/C). We then further demonstrated that the amino acid (aa) residue 149F contributed to the hyperfusogenic activity of the aMPV/vB F protein. Moreover, we revealed that residue 149F had no effect on the fusogenic activities of aMPV/A, aMPV/C, and human metapneumovirus (hMPV) F proteins. Collectively, we provide the first evidence that the amino acid at position 149 affects the fusogenic activity of the aMPV/B F protein, and our findings will provide new insights into the fusogenic mechanism of this protein.
Assuntos
Variação Genética , Metapneumovirus/genética , Infecções por Paramyxoviridae/veterinária , Doenças das Aves Domésticas/virologia , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Chlorocebus aethiops , Humanos , Metapneumovirus/química , Metapneumovirus/classificação , Metapneumovirus/metabolismo , Dados de Sequência Molecular , Infecções por Paramyxoviridae/virologia , Alinhamento de Sequência , Perus/virologia , Células Vero , Proteínas Virais de Fusão/genéticaRESUMO
Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that has caused severe economic losses in China. Gp85 protein is the main envelope protein and the most variable structural protein of ALV-J. It is also involved in virus neutralization. In this study, a specific monoclonal antibody, 4A3, was produced against the ALV-J gp85 protein. Immunofluorescence assays showed that 4A3 could react with different strains of ALV-J, including the British prototype isolate HPRS103, the American strains, an early Chinese broiler isolate, and layer isolates. A linear epitope on the gp85 protein was identified using a series of partially overlapping fragments spanning the gp85-encoding gene and subjecting them to western blot analysis. The results indicated that (134)AEAELRDFI(142) was the minimal linear epitope that could be recognized by mAb 4A3. Enzyme-linked immunosorbent assay (ELISA) revealed that chicken anti-ALV-J sera and mouse anti-ALV-J gp85 sera could also recognize the minimal linear epitope. Alignment analysis of amino acid sequences indicated that the epitope was highly conserved among 34 ALV-J strains. Furthermore, the epitope was not conserved among subgroup A and B of avian leukosis virus (ALV). Taken together, the mAb and the identified epitope may provide valuable tools for the development of new diagnostic methods for ALV-J.
Assuntos
Vírus da Leucose Aviária/imunologia , Leucose Aviária/virologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Doenças das Aves Domésticas/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Leucose Aviária/imunologia , Vírus da Leucose Aviária/química , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/isolamento & purificação , Galinhas , Mapeamento de Epitopos , Epitopos de Linfócito B/genética , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Doenças das Aves Domésticas/imunologia , Especificidade da Espécie , Proteínas do Envelope Viral/genéticaRESUMO
Avian leukosis virus subgroup J (ALV-J) is an avian oncogenic retrovirus that can induce various clinical tumors and has caused severe economic losses in China. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of ALV-J infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-tandem mass spectrometry to detect the protein changes in DF-1 cells infected and mock-infected with ALV-J. A total of 75 cellular proteins were significantly changed, including 33 upregulated proteins and 42 downregulated proteins. The reliability of iTRAQ-LC MS/MS was confirmed via real-time PCR. Most of these proteins were related to the physiological functions of metabolic processes, biosynthetic processes, responses to stimuli, protein binding, signal transduction, cell cytoskeleton, and so forth. We also found some proteins that play important roles in apoptosis and oncogenicity. The differentially expressed proteins identified may provide valuable information to elucidate the pathogenesis of virus infection and virus-host interactions.
Assuntos
Vírus da Leucose Aviária/fisiologia , Leucose Aviária/metabolismo , Cromatografia Líquida/métodos , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Linhagem Celular , Galinhas , Técnica Indireta de Fluorescência para Anticorpo , Marcação por Isótopo , Anotação de Sequência Molecular , Mapeamento de Interação de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Software , Transcrição GênicaRESUMO
Avian leukosis virus subgroup J (ALV-J) was first isolated from meat-producing chickens that had developed myeloid leukosis. However, ALV-J infections associated with hemangiomas have occurred in egg-producing (layer) flocks in China. In this study, we identified an ALV-J layer isolate (HLJ13SH01) as a recombinant of ALV-J and a Rous sarcoma virus Schmidt-Ruppin B strain (RSV-SRB), which contained the RSV-SRB 5'-LTR and the other genes of ALV-J. Replication kinetic testing indicated that the HLJ13SH01 strain replicated faster than other ALV-J layer isolates in vitro. Sequence analysis indicated that the main difference between the two isolates was the 5'-LTR sequences, particularly the U3 sequences. A 19 nt insertion was uniquely found in the U3 region of the HLJ13SH01 strain. The results of a Dual-Glo luciferase assay revealed that the 19 nt insertion in the HLJ13SH01 strain increased the enhancer activity of the U3 region. Moreover, an additional CCAAT/enhancer element was found in the 19 nt insertion and the luciferase assay indicated that this element played a key role in increasing the enhancer activity of the 5'-U3 region. To confirm the potentiation effect of the 19 nt insertion and the CCAAT/enhancer element on virus replication, three infectious clones with 5'-U3 region variations were constructed and rescued. Replication kinetic testing of the rescued viruses demonstrated that the CCAAT/enhancer element in the 19 nt insertion enhanced the replication capacity of the ALV-J recombinant in vitro.