Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Plant Dis ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319631

RESUMO

Epimedium sagittatum is a collective term for herbaceous plants belonging to the family Berberidaceae. Their dried leaves and stems have significant therapeutic effects on tumor inhibition, hypertension control, and coronary heart disease (Ke et al. 2023; Zhao et al. 2019). In 2021 and 2022, plants with similar leaf rot symptoms ranging from 30% to 55% was observed on E. sagittatum in Congjiang County, Guizhou province. The initial symptoms of the disease manifest locally on the leaf, with yellowing on the surface edge of the affected tissue, browning in the middle part, and brown-white discoloration in the innermost part (Supplementary Figure S1B). As the disease progresses, the entire infected leaf gradually softens, while the veins remain intact (Supplementary Figure S1C). Ultimately, the leaf withers and dehisces. The nine samples with typical symptoms were collected from Congjiang County, Guizhou province (26.598°N, 106.707°E). Twenty-seven fungi were isolated, including ten isolates of Rhizopus and seventeen isolates of seven other genera. On isolate YYH-CJ-17 many sporangia were formed and turned to a brown-gray to black color on potato dextrose agar medium (PDA) after culturing 5 days under dark at 25 ℃ (Supplementary Figure S2A and S2B). The branches of mycelium were finger-shaped or root-shaped. The sporangium was spherical or nearly spherical, 60-250 µm in diameter, and sporangiospores were elliptical or spherical and 4-8 µm in diameter. The obtained 547 bp ITS fragment (accession OR225970) and 1231 bp EF-1α region (accession OR242258) from isolate YYH-CJ-17 were compared with NR database using the BLAST tool provided by NCBI, which revealed more than 99.5% identity (query cover more than 98%) with the sequences of ITS (accessions MF522822.1) and EF-1α (accession AB281541.1) of Rhizopus oryzae Went & H.C. Prinsen Geerlings (Gao et al. 2022; Zhang et al. 2022). The phylogenetic tree constructed with the ITS and EF-1α gene sequences demonstrates that strain YYH-CJ-17 clusters with R. oryzae in the same branch and the bootstrap value was greater than 99% (Supplementary Figure S3). Based on the morphological characteristics and ITS and EF-1a sequences, the isolate YYH-CJ-17 is identified as R. oryzae. Pathogenicity tests were performed on detached healthy leaves and living plants of E. sagittatum. Healthy leaves of E. sagittatum were subjected to inoculation with isolate YYH-CJ-17 with 5 × 105 CFU mL-1 concentration in sterile culture dishes. The progression of the disease was marked by the gradual softening of the infected leaves and the expansion of the lesions, which ultimately produced black-brown sporangium (Supplementary Figure S4A). Furthermore, the E. sagittatum living plants were sprayed with 5 × 105 CFU mL-1 conidial suspension of isolate YYH-CJ-17, with ddH2O as a negative control, and then were cultivated at 25℃ and 90% humidity for 21 days in the greenhouse. This assay found that the E. sagittatum leaves treated with isolate YYH-CJ-17 exhibited the same symptoms observed on plants in fields (Supplementary Figure S4B). The fungus re-isolated from the inoculated leaves were identified as R. oryzae by ITS sequencing and were blasted with NR database, which highest matched with the sequence of ITS (accessions MF522822.1) mentioned above, thus fulfilling Koch's postulates. R. oryzae has been identified as a causative agent of a diverse array of host diseases, including leaf mildew of tobacco, fruit rot of yellow oleander and pears, and soft rot of bananas (Farooq et al. 2017; Khokhar et al. 2019; Kwon et al. 2012; Pan et al. 2021). To the best of our knowledge, this is the first report of leaf rot on E. sagittatum caused by R. oryzae in China, which will provide clear prevention and management target for the leaf rot disease of E. sagittatum.

2.
J Affect Disord ; 349: 176-186, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190861

RESUMO

BACKGROUND: This study aimed to investigate associations of meeting 24-h movement behavior (24-HMB: physical activity [PA], screen time [ST] in the school-aged youth, and sleep) guidelines with indicators of academic engagement, psychological functioning, and cognitive function in a national representative sample of U.S. youth. METHODS: In this cross-sectional study, 1794 participants aged 6 to 17 years old were included for multivariable logistic regression to determine the above-mentioned associations, while adjusting for sociodemographic and health covariates. RESULTS: The proportion of participants who met 24-HMB guideline(s) varied greatly (PA+ ST+ sleep = 34 [weighted 1.17 %], PA + ST = 23 [weighted 1.72 %], PA + sleep = 52 [weighted 2.15 %], PA = 34 [weighted 2.88 %], ST = 142 [weighted 7.5 %], ST+ sleep = 209 [weighted 11.86 %], sleep = 725 [weighted 35.5 %], none = 575 [weighted 37.22 %]). Participants who met ST guideline alone and integrated (ST + Sleep and ST + sleep + PA) guidelines demonstrated the consistently beneficial associations with learning interest/curiosity, caring for school performance, completing required homework, resilience, cognitive difficulties, self-regulation (ps < 0.05). CONCLUSION: Meeting 24-HMB guidelines in an isolated or integrative manner was associated with improved academic engagement, psychological functioning, and reduced cognitive difficulties. These findings highlight the importance of the promotion of 24-HMB guidelines in youth with internalizing problems. Future longitudinal studies are needed to investigate whether changes or modifications of meeting specific 24-HMB guidelines (especially ST) is beneficial for youth with internalizing problems.


Assuntos
Fidelidade a Diretrizes , Comportamento Sedentário , Humanos , Adolescente , Criança , Estudos Transversais , Cognição , Instituições Acadêmicas , Sono/fisiologia
3.
Toxins (Basel) ; 15(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38133178

RESUMO

Zearalenone (ZEN) is a mycotoxin produced by Fusarium spp., which commonly and severely contaminate food/feed. ZEN severely affects food/feed safety and reduces economic losses owing to its carcinogenicity, genotoxicity, reproductive toxicity, endocrine effects, and immunotoxicity. To explore efficient methods to detoxify ZEN, we identified and characterized an efficient ZEN-detoxifying microbiota from the culturable microbiome of Pseudostellaria heterophylla rhizosphere soil, designated Bacillus amyloliquefaciens D-1. Its highest ZEN degradation rate reached 96.13% under the optimal condition. And, D-1 can almost completely remove ZEN (90 µg·g-1) from coix semen in 24 h. Then, the D-1 strain can detoxify ZEN to ZEM, which is a new structural metabolite, through hydrolyzation and decarboxylation at the ester group in the lactone ring and amino acid esterification at C2 and C4 hydroxy. Notably, ZEM has reduced the impact on viability, and the damage of cell membrane and nucleus DNA and can significantly decrease the cell apoptosis in the HepG2 cell and TM4 cell. In addition, it was found that the D-1 strain has no adverse effect on the HepG2 and TM4 cells. Our findings can provide an efficient microbial resource and a reliable reference strategy for the biological detoxification of ZEN.


Assuntos
Bacillus amyloliquefaciens , Coix , Probióticos , Zearalenona , Zearalenona/análise , Bacillus amyloliquefaciens/metabolismo , Coix/metabolismo , Sementes/química
5.
Front Genet ; 14: 1032683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36861126

RESUMO

Background: The role of alcohol in carcinogenesis has received increasing attention in recent years. Evidence shows its impacts on various aspects, including epigenetics alteration. The DNA methylation patterns underlying alcohol-associated cancers are not fully understood. Methods: We investigated the aberrant DNA methylation patterns in four alcohol-associated cancers based on the Illumina HumanMethylation450 BeadChip. Pearson coefficient correlations were identified between differential methylated CpG probes and annotated genes. Transcriptional factor motifs were enriched and clustered using MEME Suite, and a regulatory network was constructed. Results: In each cancer, differential methylated probes (DMPs) were identified, and 172 hypermethylated and 21 hypomethylated pan-cancer DMPs (PDMPs) were examined further. Annotated genes significantly regulated by PDMPs were investigated and enriched in transcriptional misregulation in cancers. The CpG island chr19:58220189-58220517 was hypermethylated in all four cancers and silenced in the transcription factor ZNF154. Various biological effects were exerted by 33 hypermethylated and seven hypomethylated transcriptional factor motifs grouped into five clusters. Eleven pan-cancer DMPs were identified to be associated with clinical outcomes in the four alcohol-associated cancers, which might provide a potential point of view for clinical outcome prediction. Conclusion: This study provides an integrated insight into DNA methylation patterns in alcohol-associated cancers and reveals the corresponding features, influences, and potential mechanisms.

6.
PLoS One ; 18(1): e0281132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706151

RESUMO

BACKGROUND: The WD40-encoding RNA antisense to p53 (WRAP53) is an antisense gene of TP53 with three transcriptional start sites producing three transcript variants involved in the progression of non-small cell lung cancer. However, the mechanism by which these different transcript variants regulate non-small cell lung cancer cell behaviors is to be elucidated. METHODS: Two non-small cell lung cancer cell lines, A549 cells with wild-type p53 and H1975 with mutated p53, were transfected with WRAP53-1α and WRAP53-1ß siRNA. The biological effects were assessed via colony formation, cell viability, apoptosis, cell cycle, wound healing and cell invasion assays, as well as immunoblotting. RESULTS: Knockdown of WRAP53-1α increased the mRNA and protein levels of p53; suppressed colony formation and proliferation of A549 cells but promoted them in H1975 cells; increased the proportion of cells in the G0/G1 phase in A549 cells but decreased that in H1975 cells; and suppressed migration and invasion in A549 cells but not in H1975 cells. Conversely, knockdown of WRAP53-1ß had no effect on p53 expression; promoted the growth of A549 cells but not of H1975 cells; decreased the proportion of cells in the G0/G1 phase in A549 cells but not in H1975 cells; and promoted migration and invasion in A549 cells but not in H1975 cells. Knockdown of both WRAP53-1α and WRAP53-1ß promoted apoptosis in A549 cells but not in H1975 cells. CONCLUSIONS: WRAP53 transcript variants exerted different functions in non-small cell lung cancer cells and regulated non-small cell lung cancer cell behaviors depending on the p53 expression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Células A549 , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Cancer Lett ; 545: 215852, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926817

RESUMO

Small cell lung cancer (SCLC) is a highly malignant tumor with extremely poor prognosis. The treatment strategy is very limited, and patient outcomes remain dismal with the 5-year survival rate being mere 3-6%. Thus, novel therapeutic strategies for SCLC patients are urgently needed. In this study, we found that the triple-therapy of poly (ADP-ribose) polymerase (PARP) inhibitor, radiotherapy (RT) and anti-PD-1 treatment significantly inhibited tumor growth and prolonged survival in the syngeneic SCLC models in immunocompetent C57BL/6 mice. Mechanistically, we demonstrated that the combination of PARP inhibitor niraparib and RT reshaped an inflamed tumor microenvironment, including activation of the cGAS/STING immune response pathway, induction of immunogenic cell death, and upregulation of PD-L1 on tumor cells. Furthermore, this triple-therapy substantially augmented CD8+ T cell infiltration and activation, and enhanced anti-tumor effects as revealed by increased median survival time and reduced tumor volume without additional myelosuppression or hepatic injury. Together, our studies demonstrated that PARP inhibitor combined with RT potentiated anti-tumor immunity and enhanced the efficacy of anti-PD-1 immunotherapy in preclinical study, which provided a promising therapeutic strategy for SCLC patients in clinic.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Antígeno B7-H1 , Linhagem Celular Tumoral , Fatores Imunológicos/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Receptor de Morte Celular Programada 1 , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/radioterapia , Microambiente Tumoral
10.
Clin Transl Med ; 12(4): e792, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35415876

RESUMO

BACKGROUND: The expression of long non-coding RNA (lncRNA) prostate cancer-associated ncRNA transcripts 1 (PCAT1) is increased in non-small cell lung cancer (NSCLC). It stimulates tumour growth and metastasis, but its role in the radioimmune responses remain unknown. We aimed to explore the impacts of PCAT1 on tumorigenesis and radioimmune responses and the underlying molecular mechanisms in NSCLC. METHODS: Comprehensive bioinformatics analysis was performed to identify immunosuppressive lncRNAs involved with tumour invasion in NSCLC. The expression levels of PCAT1 were analysed by in situ hybridisation in 55 paired NSCLC tissues and adjacent normal tissues. Both loss- and gain-of-function assays were performed to examine the effects of PCAT1 and SOX2 on NSCLC cell behaviours in vivo and in vitro. Bioinformatic analyses, chromatin isolation by RNA purification (ChIRP) and dual-luciferase reporter assays were applied to validate the regulatory effects of PCAT1 on SOX2 expression. Chromatin immunoprecipitation, luciferase and rescue assays were utilised to identify the relationship between SOX2 and the cGAS/stimulator of interferon genes (STING) signalling. RESULTS: PCAT1 was immunosuppressive and related with NSCLC invasion. Increased PCAT1 was negatively correlated with immune cell infiltration in NSCLC. PCAT1 knockdown restrained proliferation, increased apoptosis, and repressed cell metastasis in vivo and in vitro. PCAT1 activated SOX2 that accelerated tumorigenesis and immunosuppression. SOX2 promoted tumour growth through inhibiting cytotoxic T-cell immunity. Moreover, SOX2 restrained cGAS transcription and hampered downstream type I interferon (IFN)-induced immune responses. Inhibition of PCAT1/SOX2 in collaboration with radiation further inhibited tumour growth, and initiated the cGAS/STING signalling pathway, which enhanced the immune responses of radiotherapy in NSCLC. CONCLUSIONS: PCAT1/SOX2 axis promoted tumorigenesis and immunosuppression through inhibition of cGAS/STING signalling-mediated T-cell activation. Inhibition of PCAT1 and SOX2 synergised with radiotherapy to activate the immune response and could serve as potential therapeutic targets.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante/genética , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição SOXB1/genética
11.
Comput Struct Biotechnol J ; 20: 496-507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35070171

RESUMO

BACKGROUND: Cox proportional hazard regression (CPH) model relies on the proportional hazard (PH) assumption: the hazard of variables is independent of time. CPH has been widely used to identify prognostic markers of the transcriptome. However, the comprehensive investigation on PH assumption in transcriptomic data has lacked. RESULTS: The whole transcriptomic data of the 9,056 patients from 32 cohorts of The Cancer Genome Atlas and the 3 lung cancer cohorts from Gene Expression Omnibus were collected to construct CPH model for each gene separately for fitting the overall survival. An average of 8.5% gene CPH models violated the PH assumption in TCGA pan-cancer cohorts. In the gene interaction networks, both hub and non-hub genes in CPH models were likely to have non-proportional hazards. Violations of PH assumption for the same gene models were not consistent in 5 non-small cell lung cancer datasets (all kappa coefficients < 0.2), indicating that the non-proportionality of gene CPH models depended on the datasets. Furthermore, the introduction of log(t) or sqrt(t) time-functions into CPH improved the performance of gene models on overall survival fitting in most tumors. The time-dependent CPH changed the significance of log hazard ratio of the 31.9% gene variables. CONCLUSIONS: Our analysis resulted that non-proportional hazards should not be ignored in transcriptomic data. Introducing time interaction term ameliorated performance and interpretability of non-proportional hazards of transcriptome data in CPH.

12.
Oxid Med Cell Longev ; 2021: 4522210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925694

RESUMO

OBJECTIVE: To explore the effects of miR-195-5p and its target gene HOXA10 on the biological behaviors and radiosensitivity of lung adenocarcinoma (LUAD) cells. METHODS: The effects of miR-195-5p on LUAD cell proliferation, migration, invasion, cycle arrest, apoptosis, and radiosensitivity were investigated by in vitro experiments. The bioinformatics analysis was used to assess its clinical value and predict target genes. Double-luciferase experiments were used to verify whether the miR-195-5p directly targeted HOXA10. A xenograft tumor-bearing mouse model was used to examine its effects on the radiosensitivity of LUAD in vivo. RESULTS: Both gain- and loss-of-function assays demonstrated that miR-195-5p inhibited LUAD cell proliferation, invasion, and migration, induced G1 phase arrest and apoptosis, and enhanced radiosensitivity. Double-luciferase experiments confirmed that miR-195-5p directly targeted HOXA10. Downregulation of HOXA10 also inhibited LUAD cell proliferation, migration, and invasion, induced G1 phase arrest and apoptosis, and enhanced radiosensitivity. The protein levels of ß-catenin, c-myc, and Wnt1 were decreased by miR-195-5p and increased by its inhibitor. Moreover, the effects of the miR-195-5p inhibitor could be eliminated by HOXA10-siRNA. Furthermore, miR-195-5p improved radiosensitivity of LUAD cells in vivo. CONCLUSION: miR-195-5p has excellent antitumor effects via inhibiting cancer cell growth, invasion, and migration, arresting the cell cycle, promoting apoptosis, and sensitizing LUAD cells to X-ray irradiation by targeting HOXA10. Thus, miR-195-5p may serve as a potential candidate for the treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão/radioterapia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Proteínas Homeobox A10/metabolismo , Neoplasias Pulmonares/radioterapia , MicroRNAs/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Movimento Celular , Proliferação de Células , Proteínas Homeobox A10/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Tolerância a Radiação , Células Tumorais Cultivadas , Raios X , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cell Transplant ; 30: 9636897211055046, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34705571

RESUMO

Chemokines exhibited complicated functions in antitumor immunity, with their expression profile and clinical importance of lung adenocarcinoma (LUAD) patients remaining largely undetermined. This study aimed to explore the expression patterns of chemokine family in LUAD and construct a predictive chemokine family-based signature. A total of 497 samples were downloaded from the Cancer Genome Atlas (TCGA) data portal as the training set, and the combination of 4 representative Gene Expression Omnibus (GEO) datasets, including GSE30219, GSE50081, GSE37745, and GSE31210, were utilized as the validation set. A three gene-based signature was constructed using univariate and stepwise multivariate Cox regression analysis, classifying patients into high and low risk groups according to the overall survival. The independent GEO datasets were utilized to validate this signature. Another multivariate analysis revealed that this signature remained an independent prognostic factor in LUAD patients. Furthermore, patients in the low risk group featured immunoactive tumor microenvironment (TME), higher IPS scores and lower TIDE scores, and was regarded as the potential beneficiaries of immunotherapy. Finally, the role of risky CCL20 was validated by immunohistochemistry (IHC), and patients possessed higher CCL20 expression presented shorter overall survival (P = 0.011).


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Quimiocinas/genética , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/patologia , Idoso , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Prognóstico , Resultado do Tratamento , Microambiente Tumoral
14.
Gene ; 804: 145900, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34400279

RESUMO

The role of tobacco in carcinogenesis has received increasing attention across a number of disciplines in recent years. Accumulating evidences reveal that tobacco consumption affects various epigenetic modifications, especially DNA methylation. However, the genetic modifications of methylation patterns involved in tobacco-attributable cancers remain poorly understood. In this manuscript, aberrant DNA methylation patterns were investigated in 9 tobacco-attributable cancers. Differential methylated probes (DMPs) were identified in each cancer type and a total of 2,392 hyper- and 736 hypomethylated pan-cancer DMPs (PDMPs) were screened out for further analysis. PDMP-associated genes were mostly enriched in metabolism-associated pathways, suggesting the potential roles of methylation alternation in reprogramming cancer cell metabolism. Hypomethylated PDMPs cg12422154, cg02772121 and cg06051311 constituted an enhancer region, significantly downregulating TRIM15, TRIM26 and RPP21, which serve as epigenetically therapeutic biomarkers. Forty-three hypermethylated and 13 hypomethylated transcription factor motifs were clustered into 6 groups, and exhibited various biological functions. Forty-nine PDMPs were reported to be associated with prognosis, providing effective tools to predict clinical outcomes. In summary, our studies revealed the characteristics, influences and potential mechanisms of DNA methylation patterns of tobacco-attributable cancer.


Assuntos
Metilação de DNA , Neoplasias/genética , Uso de Tabaco/genética , Carcinogênese/genética , Ilhas de CpG , Bases de Dados Factuais , Bases de Dados Genéticas , Epigênese Genética , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias/etiologia , Prognóstico , Regiões Promotoras Genéticas , Uso de Tabaco/efeitos adversos , Transcriptoma , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
15.
Cancer Med ; 10(15): 5256-5269, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34152094

RESUMO

BACKGROUND: Human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) is a member of B7 family, which is upregulated in multiple tumors. However, its exact functions in non-small cell lung cancer (NSCLC) have not been fully understood. This study aimed to investigate the biological roles of HHLA2 in human NSCLC and the relevant mechanisms. In addition, the effects of tumor cell-derived HHLA2 on tumor-associated macrophage (TAM) polarization were explored. METHODS: NSCLC cell growth, migration, and invasion were assessed by colony formation and modified Boyden chamber assays. Cell cycle and the CD163+ TAMs were examined by flow cytometry. A co-culture model of THP-1 macrophages and NSCLC cells was conducted to investigate the impacts of tumor cell-derived HHLA2 on THP-1 macrophage polarization. Moreover, a xenograft nude mouse model was established to explore the effects of HHLA2 on tumorigenesis in vivo. RESULTS: HHLA2 was upregulated in A549 and H1299 cells compared with the normal lung epithelial BEAS-2B cells. HHLA2 deficiency inhibited NSCLC cell proliferation, migration, invasion, and induced G0/G1 phase arrest partially via inhibiting EGFR/MAPK/ERK signaling pathway. Furthermore, HHLA2 knockdown inhibited M2 polarization of TAMs via downregulating IL-10. In addition, knockdown of HHLA2 inhibited tumor growth in vivo. CONCLUSION: HHLA2 downregulation inhibited NSCLC growth and TAM M2 polarization. HHLA2 may serve as a therapeutic target and promising prognostic biomarker in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Polaridade Celular , Progressão da Doença , Imunoglobulinas/deficiência , Neoplasias Pulmonares/patologia , Macrófagos Associados a Tumor/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Movimento Celular , Técnicas de Cocultura , Regulação para Baixo , Xenoenxertos , Humanos , Imunoglobulinas/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Células THP-1 , Regulação para Cima
16.
Int J Biol Sci ; 17(8): 1995-2008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34131401

RESUMO

Abnormal expression and dysfunction of Never-in-mitosis-A-related kinase 2 (NEK2) result in tumorigenesis. High levels of NEK2 are related to malignant progression, drug resistance, and poor prognosis. However, the relationship between NEK2 levels and the occurrence of non-small cell lung cancer (NSCLC) remains unknown. This study aimed to explore the impacts of NEK2 on the oncogenesis of NSCLC and the tumor microenvironment. Downregulation of NEK2 inhibited A549 and H1299 cell proliferation, migration, and invasion, blocking cell cycle at the G0/G1 phase. Loss of NEK2 inhibited the release of IL-10 from tumor cells, M2-like polarization of macrophages, angiogenesis, and vascular endothelial cell migration. Furthermore, NEK2 deficiency inhibited tumor growth in vivo. Taken together, NEK2 knockdown inhibited the occurrence and development of NSCLC, M2 polarization of macrophages, and angiogenesis. The abnormal expression of NEK2 might not only indicate tumor progression and patient prognosis but also serve as a potential molecular therapeutic target with great development prospects.


Assuntos
Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas , Quinases Relacionadas a NIMA , Microambiente Tumoral/genética , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Regulação para Baixo , Descoberta de Drogas , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Prognóstico , Ensaio Tumoral de Célula-Tronco
17.
J Mater Chem B ; 9(23): 4643-4653, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34009230

RESUMO

Radiotherapy, as well as chemotherapy and surgery, occupies an essential position in tumor treatment. Nonetheless, insufficient radiation deposition and hypoxia-related radioresistance of cancer cells still are serious challenges in radiotherapy. Herein, we proposed a hollow PtCo nanosphere (PtCo NS)-based novel radiosensitizer with three advantages to sensitize tumor radiotherapy: (i) the high-Z element Pt ensured higher radiation absorption to cause more DNA damage, (ii) the platinum (Pt) and cobalt (Co) elements exhibited a dual catalase-like enzymatic activity to convert endogenic H2O2 to O2 efficiently, and (iii) the unique hollow nature of the PtCo NS provided a large specific surface area, which could amplify the catalytic reaction of H2O2 to induce reactive oxygen species and cancer cell apoptosis upon combination with radiation. Both in vivo and in vitro studies showed that the hollow PtCo NS could significantly inhibit tumor growth, simultaneously relieving tumor hypoxia with good biocompatibility and biosafety. This work presents a simple but multifunctional radiosensitizer with a unique hollow structure for radiotherapy enhancement.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Catalase/metabolismo , Cobalto/química , Neoplasias Pulmonares/radioterapia , Nanopartículas Metálicas/química , Nanosferas/química , Oxigênio/metabolismo , Platina/química , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Difração de Pó , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cell Biosci ; 11(1): 74, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858512

RESUMO

BACKGROUND: As one of the most common malignancy, lung adenocarcinoma (LUAD) is characterized by low 5-year survival rate. This research aimed to investigate the effects of ribonucleotide reductase regulatory subunit M2 (RRM2) on malignant biological behaviors and activation of cGAS/STING pathway. We also explored the synergistic sensitization mechanisms of RRM2 and radiotherapy. METHODS: Bioinformatic tools were used to evaluate the clinical significance of RRM2 in LUAD patients. The roles of RRM2 in malignant phenotype and DNA damage in LUAD cells were investigated with cell proliferation, colony formation, immunofluorescence, modified Boyden chamber and comet assays. The mouse models were used to evaluate the biological significance of RRM2 in vivo. Cytotoxic T cell infiltration was evaluated via flow cytometric analysis and immunohistochemistry staining in C57BL/6 mice. We also explored the synergistic effects of RRM2 silencing and radiation on LUAD cells with apoptosis assay and immunoblotting in vitro. RESULTS: Bioinformatic analysis revealed that RRM2 had diagnostic values for LUAD patients. Higher levels of RRM2 predicted worse prognosis. RRM2 silencing inhibited LUAD cell proliferation, invasion and migration. RRM2 knockdown induced S phase arrest and DNA damage. RRM2 silencing induced cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, and the downstream targets were regulated in a STING-dependent manner. Knockdown of RRM2 suppressed tumor growth in the xenograft tumor models. RRM2 deficiency increased CD8 + T cells in the tumor tissues and spleens. Furthermore, RRM2 silencing had synergistic effects with radiation on inhibiting cell proliferation and promoting apoptosis. Meanwhile, this combination promoted the activation of cGAS/STING signaling pathway synergistically, and simultaneously increased expression of IFNß, CCL5 and CXCL10. CONCLUSION: Our results demonstrated that RRM2 silencing had anti-tumor values and activated the cGAS/STING signaling pathway. RRM2 silencing increased CD8 + T cells infiltration. RRM2 silencing cooperated with radiation to inhibit LUAD cell proliferation, promote apoptosis and enhance the activation of cGAS/STING signaling pathway. RRM2 could be a promising target for tumor regression through cancer immunotherapy in LUAD.

19.
Front Oncol ; 11: 804418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111682

RESUMO

Non-small cell lung cancer (NSCLC) has high mortality rates worldwide. Agrin contributes to immune synapse information and is involved in tumor metastasis. However, its roles in NSCLC and tumor immune microenvironment remain unclear. This study examined the effects and the underlying mechanisms of Agrin in NSCLC and tumor-infiltrated immune cells. Clinical tissue samples were used to confirm the bioinformatic predictions. NSCLC cells were used to investigate the effects of Agrin on cell cycle and proliferation, as well as invasion and migration. Tumor xenograft mouse model was used to confirm the effects of Agrin on NSCLC growth and tumor-infiltrated regulatory T cells (Tregs) in vivo. Agrin levels in NSCLC cells were closely related to tumor progression and metastasis, and its function was enriched in the PI3K/AKT pathway. In vitro assays demonstrated that Agrin knockdown suppressed NSCLC cell proliferation and metastasis, while PI3K/AKT activators reversed the inhibitory effects of Agrin deficiency on NSCLC cell behaviors. Agrin expression was negatively associated with immunotherapy responses in NSCLC patients. Agrin knockdown suppressed Tregs, as well as interleukin (IL)-6 expression and secretion, while PI3K/AKT activators and exogenous IL-6 rescued the inhibitory effects. In the mouse model, Agrin downregulation alleviated NSCLC cell growth and Treg infiltration in vivo. Our results indicated that Agrin promotes tumor cell growth and Treg infiltration via increasing IL-6 expression and secretion through PI3K/AKT pathway in NSCLC. Our studies suggested Agrin as a therapeutically potential target to increase the efficacy of immunotherapy in NSCLC patients.

20.
Cell Transplant ; 29: 963689720977131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33334139

RESUMO

Tumor microenvironment (TME) has critical impacts on the pathogenesis of lung adenocarcinoma (LUAD). However, the molecular mechanism of TME effects on the prognosis of LUAD patients remains unclear. Our study aimed to establish an immune-related gene pair (IRGP) model for prognosis prediction and internal mechanism investigation. Based on 702 TME-related differentially expressed genes (DEGs) extracted from The Cancer Genome Atlas (TCGA) training cohort using the ESTIMATE algorithm, a 10-IRGP signature was established to predict LUAD patient prognosis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that DEGs were significantly associated with tumor immune response. In both TCGA training and Gene Expression Omnibus validation datasets, the risk score was an independent prognostic factor for LUAD patients using Lasso-Cox analysis, and patients in the high-risk group had poorer prognosis than those in the low-risk one. In the high-risk group, M2 macrophage and neutrophil infiltrations were higher, while the levels of T cell follicular helpers were significantly lower. The gene set enrichment analysis results showed that DNA repair signaling pathways were involved. In summary, we established an IRGP signature as a potential biomarker to predict the prognosis of LUAD patients.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Análise Multivariada , Prognóstico , Fatores de Risco , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA