Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 236: 109584, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225085

RESUMO

Paclitaxel (PTX) is an anticancer drug used to treat solid tumors, but one of its common adverse effects is chemotherapy-induced peripheral neuropathy (CIPN). Currently, there is limited understanding of neuropathic pain associated with CIPN and effective treatment strategies are inadequate. Previous studies report the analgesic actions of Naringenin, a dihydroflavonoid compound, in pain. Here we observed that the anti-nociceptive action of a Naringenin derivative, Trimethoxyflavanone (Y3), was superior to Naringenin in PTX-induced pain (PIP). An intrathecal injection of Y3 (1 µg) reversed the mechanical and thermal thresholds of PIP and suppressed the PTX-induced hyper-excitability of dorsal root ganglion (DRG) neurons. PTX enhanced the expression of ionotropic purinergic receptor P2X7 (P2X7) in satellite glial cells (SGCs) and neurons in DRGs. The molecular docking simulation predicts possible interactions between Y3 and P2X7. Y3 reduced the PTX-enhanced P2X7 expression in DRGs. Electrophysiological recordings revealed that Y3 directly inhibited P2X7-mediated currents in DRG neurons of PTX-treated mice, suggesting that Y3 suppressed both expression and function of P2X7 in DRGs post-PTX administration. Y3 also reduced the production of calcitonin gene-related peptide (CGRP) in DRGs and at the spinal dorsal horn. Additionally, Y3 suppressed the PTX-enhanced infiltration of Iba1-positive macrophage-like cells in DRGs and overactivation of spinal astrocytes and microglia. Therefore, our results indicate that Y3 attenuates PIP via inhibiting P2X7 function, CGRP production, DRG neuron sensitization, and abnormal spinal glial activation. Our study implies that Y3 could be a promising drug candidate against CIPN-associated pain and neurotoxicity.


Assuntos
Antineoplásicos , Neuralgia , Camundongos , Animais , Paclitaxel/toxicidade , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Simulação de Acoplamento Molecular , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Antineoplásicos/efeitos adversos , Gânglios Espinais/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo
2.
CNS Neurosci Ther ; 26(8): 815-828, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32495523

RESUMO

AIMS: SUMOylation is a posttranslational modification related to multiple human diseases. SUMOylation can be reversed by classes of proteases known as the sentrin/SUMO-specific proteases (SENPs). In the present study, we investigate the potential role of SENP1 in pericytes in the brain ischemia. METHODS: Pericyte-specific deletion of senp1 mice (Cspg4-Cre; senp1f/f ) were used for brain function and neuronal damage evaluation following brain ischemia. The cerebral blood vessels of diameter, velocity, and flux were performed in living mice by two-photon laser scanning microscopy (TPLSM). Biochemical analysis and immunohistochemistry methods were used to address the role and mechanism of pericyte-specific SENP1 in the pathological process of brain ischemia. A coculture model of HBVPs and HBMECs mimicked the BBB in vitro and was used to evaluate BBB integrity after glucose deprivation. RESULTS: Our results showed that senp1-specific deletion in pericytes did not affect the motor function and cognitive function of mice. However, the pericyte-specific deletion of senp1 aggravated the infarct size and motor deficit following focal brain ischemia. Consistently, the TPLSM data demonstrated that SENP1 deletion in pericytes accelerated thrombosis formation in brain microvessels. We also found that pericyte-specific deletion of senp1 exaggerated the neuronal damage significantly following brain ischemia in mice. Moreover, SENP1 knockdown in pericytes could activate the apoptosis signaling and disrupt the barrier integrity in vitro coculture model. CONCLUSIONS: Our findings revealed that targeting SENP1 in pericytes may represent a novel therapeutic strategy for neurovascular protection in stroke.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Cisteína Endopeptidases/deficiência , Neurônios/metabolismo , Pericitos/metabolismo , Animais , Barreira Hematoencefálica/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Técnicas de Cocultura , Cisteína Endopeptidases/genética , Humanos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia
3.
BMC Syst Biol ; 12(Suppl 7): 119, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30547775

RESUMO

BACKGROUND: Accumulation of amyloid ß-peptide (Aß) is implicated in the pathogenesis and development of Alzheimer's disease (AD). Neuron-enriched miRNA was aberrantly regulated and may be associated with the pathogenesis of AD. However, regarding whether miRNA is involved in the accumulation of Aß in AD, the underlying molecule mechanism remains unclear. Therefore, we conduct a systematic identification of the promising role of miRNAs in Aß deposition, and shed light on the molecular mechanism of target miRNAs underlying SH-SY5Y cells treated with Aß-induced cytotoxicity. RESULTS: Statistical analyses of microarray data revealed that 155 significantly upregulated and 50 significantly downregulated miRNAs were found on the basis of log2 | Fold Change | ≥ 0.585 and P < 0.05 filter condition through 2588 kinds of mature miRNA probe examined. PCR results show that the expression change trend of the selected six miRNAs (miR-6845-3p, miR-4487, miR-4534, miR-3622-3p, miR-1233-3p, miR-6760-5p) was consistent with the results of the gene chip. Notably, Aß25-35 downregulated hsa-miR-4487 and upregulated hsa-miR-6845-3p in SH-SY5Y cell lines associated with Aß-mediated pathophysiology. Increase of hsa-miR-4487 could inhibit cells apoptosis, and diminution of hsa-miR-6845-3p could attenuate axon damage mediated by Aß25-35 in SH-SY5Y. CONCLUSIONS: Together, these findings suggest that dysregulation of hsa-miR-4487 and hsa-miR-6845-3p contributed to the pathogenesis of AD associated with Aß25-35 mediated by triggering cell apoptosis and synaptic dysfunction. It might be beneficial to understand the pathogenesis and development of clinical diagnosis and treatment of AD. Further, our well-designed validation studies will test the miRNAs signature as a prognostication tool associated with clinical outcomes in AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , MicroRNAs/genética , Fragmentos de Peptídeos/toxicidade , Apoptose/efeitos dos fármacos , Apoptose/genética , Axônios/efeitos dos fármacos , Axônios/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Humanos , Transcriptoma/efeitos dos fármacos
4.
Hepatobiliary Pancreat Dis Int ; 17(6): 510-516, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30135046

RESUMO

BACKGROUD: Transarterial chemoembolization (TACE) is the primary palliative treatment for patients with unresectable hepatocellular carcinoma (HCC). However, it is often accompanied by postoperative pain which hinder patient recovery. This study was to examine whether preemptive parecoxib and sufentanil-based patient controlled analgesia (PCA) could improve the pain management in patients receiving TACE for inoperable HCC. METHODS: From June to December 2016, 84 HCC patients undergoing TACE procedure were enrolled. Because of the willingness of the individuals, it is difficult to randomize the patients to different groups. We matched the patients' age, gender and pain scores, and divided the patients into the multimodal group (n = 42) and control group (n = 42). Patients in the multimodal group received 40 mg of parecoxib, 30 min before TACE, followed by 48 h of sufentanil-based PCA. Patients in the control group received a routine analgesic regimen, i.e., 5 mg of dezocine during operation, and 100 mg of tramadol or equivalent intravenous opioid according to patient's complaints and pain intensity. Postoperative pain intensity, percentage of patients as per the pain category, adverse reaction, duration of hospital stay, cost-effectiveness, and patient's satisfaction were all taken into consideration when evaluated. RESULTS: Compared to the control group, the visual analogue scale scores for pain intensity was significantly lower at 2, 4, 6, and 12 h (all P < 0.05) in the multimodal group and a noticeably lower prevalence of post-operative nausea and vomiting in the multimodal group (31.0% vs. 59.5%). Patient's satisfaction in the multimodal group was also significantly higher than that in the control group (95.2% vs. 69.0%). No significant difference was observed in the duration of hospital stay between the two groups. CONCLUSION: Preemptive parecoxib and sufentanil-based multimodal analgesia regime is a safe, efficient and cost-effective regimen for postoperative pain control in HCC patients undergoing TACE.


Assuntos
Analgesia Controlada pelo Paciente , Carcinoma Hepatocelular/terapia , Quimioembolização Terapêutica , Neoplasias Hepáticas/terapia , Dor Pós-Operatória/terapia , Adulto , Idoso , Quimioembolização Terapêutica/efeitos adversos , Análise Custo-Benefício , Feminino , Custos de Cuidados de Saúde , Humanos , Isoxazóis/administração & dosagem , Isoxazóis/efeitos adversos , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Náusea e Vômito Pós-Operatórios/prevenção & controle , Sufentanil/administração & dosagem , Sufentanil/efeitos adversos
5.
CNS Neurosci Ther ; 23(10): 818-826, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28851042

RESUMO

AIMS: Vascular dementia (VaD) is a heterogeneous brain disorder for which there are no effective approved pharmacological treatments available. We aimed to evaluate the effect of calmodulin inhibitor, DY-9836, and its loaded nanodrug carrier system on cognitive impairment and gain a better understanding of the protective mechanisms in mice with bilateral carotid artery stenosis (BCAS). RESULTS: DY-9836 (0.5 or 1 mg/kg) or DY-9836 (0.25 mg/kg)-encapsulated polysialic acid-octadecylamine (PSA-ODA) micelles (PSA-ODA/DY) were given to BCAS mice for 4 weeks. Administration of DY-9836 or PSA-ODA/DY reduced escape latency in space exploration and working memory test compared with vehicle group. Vehicle-treated mice showed reduced phospho-CaMKII (Thr286/287) levels in the hippocampus, whereas partially restored by DY-9836 (1 mg/kg) or PSA-ODA/DY (0.25 mg/kg) treatment. In accordance with the pharmacological profile of DY-9836 observed during behavioral studies, experimental molecular and biochemical markers induced by BCAS, such as protein tyrosine nitration, Nod-like receptor protein 3 (NLRP3), caspase-1, and interleukin-1ß, were reduced by DY-9836 and PSA-ODA/DY treatment. CONCLUSIONS: These data disclose novel findings about the therapeutic potential of DY-9836, and its encapsulated nanodrug delivery system significantly enhanced the cognitive function via inhibitory effect on nitrosative stress and NLRP3 signaling in VaD mice.


Assuntos
Calmodulina/antagonistas & inibidores , Estenose das Carótidas/fisiopatologia , Demência Vascular/tratamento farmacológico , Indazóis/administração & dosagem , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nootrópicos , Piperazinas/administração & dosagem , Aminas , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Estenose das Carótidas/tratamento farmacológico , Caspase 1/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/fisiopatologia , Demência Vascular/fisiopatologia , Modelos Animais de Doenças , Portadores de Fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Micelas , Estresse Nitrosativo/efeitos dos fármacos , Estresse Nitrosativo/fisiologia , Nootrópicos/administração & dosagem , Fosforilação , Ácidos Siálicos
6.
ACS Appl Mater Interfaces ; 8(51): 35045-35058, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-27750011

RESUMO

Clinical treatment for vascular dementia still remains a challenge mainly due to the blood-brain barrier (BBB). Here, a micelle based on polysialic acid (PSA), which is a hydrophilic and endogenous carbohydrate polymer, was designed to deliver calmodulin antagonist for therapy of vascular dementia. PSA was first chemically conjugated with octadecylamine (ODA), and the obtained PSA-ODA copolymer could self-assemble into micelle in aqueous solution with a 120.0 µg/mL critical micelle concentration. The calmodulin antagonist loaded PSA-ODA micelle, featuring sustained drug release behavior over a period of 72 h with a 3.6% (w/w) drug content and a 107.0 ± 4.0 nm size was then fabricated. The PSA-ODA micelle could cross the BBB mainly via active endocytosis by brain endothelial cells followed by transcytosis. In a water maze test for spatial learning, calmodulin antagonist loaded PSA-ODA micelle significantly reduced the escape latencies of right unilateral common carotid arteries occlusion (rUCCAO) mice with dosage significantly reduced versus free drug. The decrease of hippocampal phospho-CaMKII (Thr286/287) and phospho-synapsin I (Ser603) was partially restored in rUCCAO mice following calmodulin antagonist loaded PSA-ODA micelle treatment. Consistent with the restored CaMKII phosphorylation, the elevation of BrdU/NeuN double-positive cells in the same context was also observed. Overall, the PSA-ODA micelle developed from the endogenous material might promote the development of therapeutic approaches for improving the efficacy of brain-targeted drug delivery and have great potential for vascular dementia treatment.


Assuntos
Ácidos Siálicos/química , Animais , Calmodulina , Demência Vascular , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Camundongos , Micelas , Polímeros
7.
Mol Neurobiol ; 53(4): 2600-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26093380

RESUMO

Disturbance of neuregulin-1ß/ErbB4 signaling is considered to be associated with brain ischemia, but the mechanisms of this disruption are largely unknown. In the present study, we provide evidence that degradation of ErbB4 is involved in neuronal cell death in response to ischemia. Our data showed that the application of neuregulin-1ß provided significant protection against oxygen-glucose deprivation (OGD)-induced neuronal death as detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, annexin V/propidium iodide flow cytometry analysis and terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) staining. Furthermore, neuregulin-1ß treatment significantly reduced the infarct volume of ischemic mice, and this result was not seen in the ErbB4 knockout mice. We found that brain ischemia induced the breakdown of ErbB4 in a time-dependent manner in vivo, but not that of ErbB2. In vitro studies further indicated that recombinant calpain induced the cleavage of ErbB4 in a dose-dependent way, whereas the calpain inhibitor significantly reduced the OGD-induced ErbB4 breakdown. Additionally, OGD-induced apoptosis was partially abolished by transfection with the ErbB4E872K mutant. Taken together, neuregulin-1ß elicits its neuroprotective effect in an ErbB4-dependent manner, and the cleavage of ErbB4 by calpain contributes to a neuronal cell death cascade during brain ischemia.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Calpaína/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Receptor ErbB-4/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Glucose/deficiência , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Neuregulina-1/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oxigênio , Transfecção
8.
Luminescence ; 28(6): 948-53, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23281191

RESUMO

The oxidation reaction between cerium(IV) and Tween 85 in sulfuric acid medium produced weak chemiluminescence (CL). In this paper, it was found that citrate could strongly enhance the CL of cerium(IV)-Tween 85-polyphenol system. Based on studies of ultraviolet-visible spectra and CL spectra, the CL enhancement mechanism had been proposed. It was surmised that the light emission was from an excited oxygen molecular pair O2((1)Δg)O2((1)∑g(-)). The maximum emission wavelength was about 478 nm. The effects of 17 amino acids and 29 organic compounds on cerium(IV)-Tween 85-citrate CL were investigated by a flow injection procedure. This study showed the present system had a wide application for the determination of these compounds.


Assuntos
Aminoácidos/análise , Cério/química , Luminescência , Compostos Orgânicos/análise , Polissorbatos/química , Ácido Cítrico/química , Medições Luminescentes , Oxigênio/química , Polifenóis/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA