Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629942

RESUMO

High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen's ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.


Assuntos
Doença da Altitude , Ferroptose , Animais , Camundongos , Humanos , Baço , Esplenomegalia , Leucócitos Mononucleares , Macrófagos , Hipóxia
2.
Food Funct ; 13(23): 12121-12134, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36321740

RESUMO

Inonotus obliquus (Fr.) Pilat is an edible mushroom which is used to produce tea and syrup due to its medicinal properties. In this study, 10 secondary metabolites (1-10), including a new lanostane triterpenoid named 2α-hydroxy-inotodiol (2α-HI, 1), were identified from the edible mushroom I. obliquus through high-resolution electrospray ionization mass spectrometry (HRESIMS) and nuclear magnetic resonance spectroscopy (NMR) data analysis. The neuroprotective function of all steroidal metabolites in H2O2-induced SH-SY5Y cells was investigated. The results showed that 2α-HI exhibited the most remarkable neuroprotective activity. In the meantime, 2α-HI significantly ameliorated oxidative stress damage, reactive oxygen species (ROS) accumulation and mitochondrial damage induced by H2O2 in SH-SY5Y cells. The Nrf2 siRNA and inhibitors transfected the SH-SY5Y cells, indicating the Nrf2 and BDNF/TrkB/ERK/CREB pathway mediated the neuroprotective effects of 2α-HI against the H2O2-stimulated oxidative stress and apoptosis. Moreover, the neuroprotection of 2α-HI was preliminarily verified in zebrafish. In conclusion, this research was the first to confirm that 2α-HI could effectively protect SH-SY5Y cells against H2O2-induced oxidative stress and apoptosis via the Nrf2 and BDNF/TrkB/ERK/CREB signaling pathway. Hence, this mushroom could be a potential dietary supplement to ameliorate neurodegenerative diseases.


Assuntos
Agaricales , Neuroblastoma , Fármacos Neuroprotetores , Triterpenos , Animais , Humanos , Agaricales/metabolismo , Apoptose , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Triterpenos/farmacologia , Peixe-Zebra/metabolismo
3.
Bioorg Chem ; 121: 105689, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217377

RESUMO

Ganoderma resinaceum, as a traditional edible mushroom, has been widely reported to improve neurodegenerative diseases characterized by oxidative stress and inflammation. In this study, five new terpenoids, including four lanostane triterpenoids, named ganoresinoid A-D (1-4) and one meroterpenoid, named ganoresinoid E (5), along with 27 known compounds (6-32), were isolated from the fruiting bodies of edible mushroom G. resinaceum. These structures were identified by NMR, HRESIMS data analysis. All metabolites were evaluated for anti-inflammatory, antioxidative and anti-apoptosis activities. Among them, ganoresinoid A showed notably restrained nitric oxide (NO), IL-1ß, IL-6 and TNF-α levels in LPS-activated BV-2 microglial cells via suppressing TLR-4/ NF-κB and MAPK signaling pathway. Simultaneously, ganoresinoid A remarkably alleviated LPS-induced apoptosis by means of the decrease of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). In addition, ganoresinoid A demonstrated antioxidant effects in H2O2-induced SH-SY5Y cells by activating the Akt/GSK-3ß/Nrf2 signaling pathway. Taken together, these results may provide a stronger theoretical basis for ganoresinoid A from G. resinaceum as nutrition intervention to alleviate neurodegenerative diseases.


Assuntos
Triterpenos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Ganoderma , Glicogênio Sintase Quinase 3 beta , Peróxido de Hidrogênio , Lipopolissacarídeos/farmacologia , Triterpenos/química , Triterpenos/farmacologia
4.
J Agric Food Chem ; 69(23): 6524-6534, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34096711

RESUMO

Sixteen metabolites, including seven C7-alkylated salicylaldehyde derivatives (1-7) and nine prenylated indole alkaloids (8-16), three of which are new, namely, asperglaucins A and B (1 and 2) and neoechinulin F (8), were separated from the endolichenic fungus Aspergillus chevalieri SQ-8. Asperglaucin A (1) represents an unusual phthalide-like derivative with a benzo[c]thiophen-1(3H)-one scaffold. All compounds were assessed in vitro for antibacterial, antineuroinflammatory, and antioxidant activities. Notably, asperglaucins A and B exhibited potent antibacterial activities against two plant pathogens Pseudomonas syringae pv actinidae (Psa) and Bacillus cereus, with an MIC value of 6.25 µM; further SEM analyses illustrated that the possible bacteriostatic mechanisms for compounds 1 and 2 were to alter the external structure of B. cereus and Psa, and to cause the rupture or deformation of the cell membranes, respectively, and the results suggest that compounds 1 and 2 may serve as potential promising candidates for lead compounds of agrochemical bactericides. Furthermore, compounds 6 and 10 significantly inhibited nitric oxide production with an IC50 value of ca. 12 µM, and the possible anti-inflammatory mechanisms involved were also studied by molecular docking. Finally, the tested phenolics 3-5 showed significant antioxidative effects. Thus, strain SQ-8 represents a novel resource of these bioactive metabolites to be utilized.


Assuntos
Fungos , Alcaloides Indólicos , Aldeídos , Aspergillus , Alcaloides Indólicos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular
5.
Phytochemistry ; 184: 112647, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33434790

RESUMO

Chaga mushroom, Inonotus obliquus, was used as food and nutrient food and traditional herbs in Russia, China and Japan, with anti-inflammatory and anticancer activities. Chemical investigations of the fruiting bodies of Chaga were carried to uncover the bioactive metabolites. As a result, seven undescribed lanostane-type triterpenoids, namely inonotusols H-N, were isolated, and all lanostanoids remarkably inhibited NO production in lipopolysaccharide-stimulated BV-2 microglial cells. Of these, inonotusols I and L presented the most potent inhibitory effects on inducible nitric oxide synthase (iNOS) and NO production without any significant cytotoxicity. Molecular docking studies confirmed the capacity of inonotusols I and L to interact with iNOS protein. Structure-activity relationships were also discussed. These results indicated that the potential anti-inflammatory effects of inonotusols I and L in microglial BV-2 cells may be imparted through suppression of iNOS. These results may support the use of I. obliquus for food and medicinal application.


Assuntos
Agaricales , China , Inonotus , Japão , Lanosterol/análogos & derivados , Simulação de Acoplamento Molecular
6.
Zool Res ; 41(1): 3-19, 2020 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31840949

RESUMO

Hypobaric hypoxia (HH) exposure can cause serious brain injury as well as life-threatening cerebral edema in severe cases. Previous studies on the mechanisms of HH-induced brain injury have been conducted primarily using non-primate animal models that are genetically distant to humans, thus hindering the development of disease treatment. Here, we report that cynomolgus monkeys ( Macacafascicularis) exposed to acute HH developed human-like HH syndrome involving severe brain injury and abnormal behavior. Transcriptome profiling of white blood cells and brain tissue from monkeys exposed to increasing altitude revealed the central role of the HIF-1 and other novel signaling pathways, such as the vitamin D receptor (VDR) signaling pathway, in co-regulating HH-induced inflammation processes. We also observed profound transcriptomic alterations in brains after exposure to acute HH, including the activation of angiogenesis and impairment of aerobic respiration and protein folding processes, which likely underlie the pathological effects of HH-induced brain injury. Administration of progesterone (PROG) and steroid neuroprotectant 5α-androst-3ß,5,6ß-triol (TRIOL) significantly attenuated brain injuries and rescued the transcriptomic changes induced by acute HH. Functional investigation of the affected genes suggested that these two neuroprotectants protect the brain by targeting different pathways, with PROG enhancing erythropoiesis and TRIOL suppressing glutamate-induced excitotoxicity. Thus, this study advances our understanding of the pathology induced by acute HH and provides potential compounds for the development of neuroprotectant drugs for therapeutic treatment.


Assuntos
Androstanóis/farmacologia , Hipóxia/veterinária , Macaca fascicularis , Doenças dos Macacos/prevenção & controle , Progesterona/farmacologia , Transcriptoma , Androstanóis/administração & dosagem , Animais , Encefalopatias/prevenção & controle , Encefalopatias/veterinária , Cálcio/metabolismo , Regulação da Expressão Gênica , Hipóxia/patologia , Leucócitos/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Pressão , Progesterona/administração & dosagem
7.
J Cell Biochem ; 120(11): 18967-18978, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31241212

RESUMO

Mitochondrial dysfunction plays a principal role in hypoxia-induced endothelial injury, which is involved in hypoxic pulmonary hypertension and ischemic cardiovascular diseases. Recent studies have identified mitochondria-associated membranes (MAMs) that modulate mitochondrial function under a variety of pathophysiological conditions such as high-fat diet-mediated insulin resistance, hypoxia reoxygenation-induced myocardial death, and hypoxia-evoked vascular smooth muscle cell proliferation. However, the role of MAMs in hypoxia-induced endothelial injury remains unclear. To explore this further, human umbilical vein endothelial cells and human pulmonary artery endothelial cells were exposed to hypoxia (1% O2 ) for 24 hours. An increase in MAM formation was uncovered by immunoblotting and immunofluorescence. Then, we performed small interfering RNA transfection targeted to MAM constitutive proteins and explored the biological effects. Knockdown of MAM constitutive proteins attenuated hypoxia-induced elevation of mitochondrial Ca2+ and repressed mitochondrial impairment, leading to an increase in mitochondrial membrane potential and ATP production and a decline in reactive oxygen species. Then, we found that MAM disruption mitigated cell apoptosis and promoted cell survival. Next, other protective effects, such as those pertaining to the repression of inflammatory response and the promotion of NO synthesis, were investigated. With the disruption of MAMs under hypoxia, inflammatory molecule expression was repressed, and the eNOS-NO pathway was enhanced. This study demonstrates that the disruption of MAMs might be of therapeutic value for treating endothelial injury under hypoxia, suggesting a novel strategy for preventing hypoxic pulmonary hypertension and ischemic injuries.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Mitocôndrias , Membranas Mitocondriais , Artéria Pulmonar , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Hipóxia Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Pulmonar/lesões , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia
8.
Int J Mol Sci ; 20(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083380

RESUMO

Mitochondria-associated membranes (MAM) are a well-recognized contact link between the mitochondria and endoplasmic reticulum that affects mitochondrial biology and vascular smooth muscle cells (VSMCs) proliferation via the regulation of mitochondrial Ca2+(Ca2+m) influx. Nogo-B receptor (NgBR) plays a vital role in proliferation, epithelial-mesenchymal transition, and chemoresistance of some tumors. Recent studies have revealed that downregulation of NgBR, which stimulates the proliferation of VSMCs, but the underlying mechanism remains unclear. Here, we investigated the role of NgBR in MAM and VSMC proliferation. We analyzed the expression of NgBR in pulmonary arteries using a rat model of hypoxic pulmonary hypertension (HPH), in which rats were subjected to normoxic recovery after hypoxia. VSMCs exposed to hypoxia and renormoxia were used to assess the alterations in NgBR expression in vitro. The effect of NgBR downregulation and overexpression on VSMC proliferation was explored. The results revealed that NgBR expression was negatively related with VSMCs proliferation. Then, MAM formation and the phosphorylation of inositol 1,4,5-trisphosphate receptor type 3 (IP3R3) was detected. We found that knockdown of NgBR resulted in MAM disruption and augmented the phosphorylation of IP3R3 through pAkt, accompanied by mitochondrial dysfunction including decreased Ca2+m, respiration and mitochondrial superoxide, increased mitochondrial membrane potential and HIF-1α nuclear localization, which were determined by confocal microscopy and Seahorse XF-96 analyzer. By contrast, NgBR overexpression attenuated IP3R3 phosphorylation and HIF-1α nuclear localization under hypoxia. These results reveal that dysregulation of NgBR promotes VSMC proliferation via MAM disruption and increased IP3R3 phosphorylation, which contribute to the decrease of Ca2+m and mitochondrial impairment.


Assuntos
Membranas Mitocondriais/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Proteínas Nogo/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Proliferação de Células , Regulação para Baixo , Retículo Endoplasmático/metabolismo , Hipertensão Pulmonar , Hipóxia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Modelos Biológicos , Miócitos de Músculo Liso/ultraestrutura , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Transdução de Sinais
9.
Fitoterapia ; 134: 201-209, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30831199

RESUMO

Eleven new cyathane diterpenoids, designated cyafricanins A-K (1-11), were isolated from the culture broth of the baisidiomycete Cyathus africanus (Nidulariaceae, Bird's nest fungi). Their structures were elucidated by comprehensive analysis of their NMR and HRESIMS data. Cyafricanins A (1) was found to possess an unusual 3,4-seco­carbon skeleton. All compounds were evaluated for their neurotrophic activity in PC-12 cells and anti-neuroinflammatory activity in BV2 microglia cells. All of the diterpenoids showed nerve growth factor induced neurite outgrowth-promoting activity at concentration of 20 µM. Among them, cyafricanin B (2) and cyafricanin G (7) exhibited promising neurotrophic activity, and cyafricanin A (1) showed strong inhibitory effects on both inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, molecular docking studies revealed that cyafricanin A (1) showed strong interactions with the iNOs protein in the active cavity.


Assuntos
Anti-Inflamatórios/farmacologia , Cyathus/química , Diterpenos/farmacologia , Microglia/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Animais , Anti-Inflamatórios/isolamento & purificação , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2/isolamento & purificação , Inibidores de Ciclo-Oxigenase 2/farmacologia , Diterpenos/isolamento & purificação , Simulação de Acoplamento Molecular , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Células PC12 , Ratos
10.
Reproduction ; 156(6): 545-558, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30328348

RESUMO

Autophagy and apoptosis are interlocked in an extensive crosstalk. Our previous study demonstrated that hypotonic hypoxia-induced marked apoptosis of a spermatocyte-derived cell line (GC-2). However, whether hypoxia-induced apoptosis is mediated by inhibition of autophagy under hypoxic conditions remains unclear. In this study, GC-2 cells were cultured in 1% O2 and harvested at different time points. Autophagy was determined by acridine orange staining, cyto-ID staining, mCherry-GFP-LC3B adenovirus transfection and Western blotting for various autophagy markers. Apoptosis was detected by TUNEL staining, flow cytometry, JC-1 staining and Western blotting of apoptosis-related proteins. We found that hypoxia-induced apoptosis of GC-2 cells through mitochondrial and death receptor pathways and inhibited autophagic flux in GC-2 cells in a time-dependent manner. However, while marked autolysosome formation was observed in GC-2 cells before 24-h culture in hypoxic conditions, apparent apoptosis was observed only after 24-h culture in hypoxic conditions. Caspase-8 siRNA treatment induced cell survival, accompanied by induction of the mature autophagosome, acidic vesicular organelle formation and autophagic flux. Furthermore, Beclin-1 overexpression markedly attenuated the impairment of spermatogenesis in mice by inhibiting apoptosis of spermatocytes. The results of this study demonstrate that hypoxia inhibits autophagy, which further enhances hypoxia-induced apoptosis of mouse spermatocytes by promoting caspase-8 activation in a time-dependent manner, suggesting that combined application of apoptosis inhibition and autophagy activation might be a therapeutic strategy for treating hypoxia-induced male infertility.


Assuntos
Apoptose , Autofagia , Espermatócitos/patologia , Espermatogênese , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Hipóxia Celular , Linhagem Celular , Microambiente Celular , Masculino , Camundongos , Transdução de Sinais , Espermatócitos/metabolismo , Fatores de Tempo
11.
Front Immunol ; 9: 1667, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083155

RESUMO

Acute lung injury (ALI) is characterized by non-cardiogenic diffuse alveolar damage and often leads to a lethal consequence, particularly when hypoxia coexists. The treatment of ALI remains a challenge: pulmonary inflammation and hypoxia both contribute to its onset and progression and no effective prevention approach is available. Here, we aimed to investigate the underlying mechanism of hypoxia interaction with inflammation in ALI and to evaluate hypoxia-inducible factor 1 alpha (HIF-1α)-the crucial modulator in hypoxia-as a potential therapeutic target against ALI. First, we developed a novel ALI rat model induced by a combined low-dose of lipopolysaccharides (LPS) with acute hypoxia. Second, we used gene microarray analysis to evaluate the inflammatory profiles of bronchi alveolar lavage fluid cells of ALI rats. Third, we employed an alveolar macrophage cell line, NR8383 as an in vitro system together with a toll-like receptor 4 (TLR4) antagonist TAK-242, to verify our in vivo findings from ALI animals. Finally, we tested the therapeutic effects of HIF-1α augmentation against inflammation and hypoxia in ALI. We demonstrated that (i) LPS upregulated inflammatory genes, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1ß), and interleukin-6 (IL-6), in the alveolar macrophages of ALI rats, which were further enhanced when ALI combined with hypoxia; (ii) hypoxia exposure could further enhance the upregulation of alveolar macrophageal TLR4 that was noticed in LPS-induced inflammatory ALI, conversely, TLR4 antagonist TAK-242 could suppress the macrophageal expression of TLR4 and inflammatory cytokines, including TNF-α, IL-1ß, and IL-6, suggesting that the TLR4 signaling pathway as a central link between inflammation and hypoxia in ALI; (iii) manipulation of HIF-1α in vitro could suppress TLR4 expression induced by combined LPS and hypoxia, via suppressing promoter activity of the TLR4 gene; (iv) preconditioning augmentation of HIF-1α in vivo by HIF hydroxylase inhibitor, DMOG excreted protection against inflammatory, and hypoxic processes in ALI. Together, we see that hypoxia can exacerbate inflammation in ALI via the activation of the TLR4 signaling pathway in alveolar macrophages and predispose impairment of the alveolar-capillary barrier in the development of ALI. Targeting HIF-1α can suppress TLR4 expression and macrophageal inflammation, suggesting the potential therapeutic and preventative value of HIF-1α/TLR4 crosstalk pathway in ALI.

12.
Behav Brain Res ; 347: 99-107, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29501623

RESUMO

Hypobaric hypoxia (HH) at high altitudes leads to a wide range of cognitive impairments which can handicap human normal activities and performances. However, the underlying mechanism is still unclear. Adenosine A2A receptors (A2ARs) of the brain are pivotal to synaptic plasticity and cognition. Besides, insult-induced up-regulation of A2AR regulates neuroinflammation and therefore induces brain damages in various neuropathological processes. The present study was designed to determine whether A2AR-mediate neuroinflammation involves in cognitive impairments under acute HH. A2AR knock-out and wild-type male mice were exposed to a simulated altitude of 8000 m for 7 consecutive days in a hypobaric chamber and simultaneously received behavioral tests including Morris water maze test and open filed test. A2AR expression, the activation of microglia and the production of TNF-α were evaluated in the hippocampus by immunohistochemistry and ELISA, respectively. Behavioral tests showed that acute HH exposure caused the dysfunction of spatial memory and mood, while genetic inactivation of A2AR attenuated the impairment of spatial memory but not that of mood. Double-labeled immunofluorescence showed that A2ARs were mainly expressed on microglia and up-regulated in the hippocampus of acute HH model mice. Acute HH also induced the accumulation of microglia and increased production of TNF-α in the hippocampus, which could be markedly inhibited by A2AR inactivation. These findings indicate that microglia-mediated neuroinflammation triggered by A2AR activation involves in acute HH-induced spatial memory impairment and that A2AR could be a new target for the pharmacotherapy of cognitive dysfunction at high altitudes.


Assuntos
Altitude , Disfunção Cognitiva/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Hipóxia/complicações , Hipóxia/patologia , Hipóxia/psicologia , Inflamação/complicações , Inflamação/patologia , Inflamação/psicologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Atividade Motora/fisiologia , Neuroimunomodulação/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Receptor A2A de Adenosina/genética , Memória Espacial/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
13.
J Cell Physiol ; 233(2): 1146-1155, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28444885

RESUMO

Hypoxia in vivo induces oligozoospermia, azoospermia, and degeneration of the germinal epithelium, but the underlying molecular mechanism of this induction is not fully clarified. The aim of this study was to investigate the role of the death receptor pathway and the mitochondrial pathway in hypoxia-induced apoptosis of mouse GC-2spd (GC-2) cells and the relationship between HIF-1α and apoptosis of GC-2 cells induced by hypoxia. GC-2 cells were subjected to 1% oxygen for 48 hr. Apoptosis was detected by flow cytometry, TUNEL staining, LDH, caspase-3/8/9 in the absence and presence of HIF-1α siRNA. The protein levels of apoptosis-related markers were determined by Western blot in the presence and absence of HIF-1α siRNA. Mitochondrial transmembrane potential change was observed by in situ JC-1 staining. Cell viability was assessed upon treatment of caspase-8 and 9 inhibitors. The results indicated that hypoxia at 1% oxygen for 48 hr induced apoptosis of GC-2 cells. A prolonged exposure of GC-2 cells to hypoxic conditions caused downregulation of c-FLIP, Dc R2 and Bcl-2 and upregulation of DR5 , TRAIL, Fas, p53, and Bax, with an overproduction of caspase-3/8/9. Moreover, hypoxia at this level had an effect on mitochondrial depolarization. In addition, specific inhibitors of caspase-8/9 partially suppressed hypoxia-induced GC-2 cell apoptosis, and the anti-apoptotic effects of the caspase inhibitors were additive. Of note, HIF-1α knockdown attenuated hypoxia and induced apoptosis of GC-2 cells. In conclusion, our data suggest that the death receptor pathway and mitochondrial pathway, which are likely mediated by HIF-1α, contribute to hypoxia-induced GC-2 cell apoptosis.


Assuntos
Apoptose , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Espermatócitos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Inibidores de Caspase/farmacologia , Hipóxia Celular , Linhagem Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/patologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Espermatócitos/efeitos dos fármacos , Espermatócitos/patologia , Fatores de Tempo , Transfecção
14.
Front Physiol ; 9: 1950, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687133

RESUMO

Background: Hypoxia appears in a number of extreme environments, including high altitudes, the deep sea, and during aviation, and occurs in cancer, cardiovascular disease, respiratory failures and neurological disorders. Though it is well recognized that hypoxic preconditioning (HPC) exerts endogenous neuroprotective effect against severe hypoxia, the mediators and underlying molecular mechanism for the protective effect are still not fully understood. This study established a hippocampus metabolomics approach to explore the alterations associated with HPC. Methods: In this study, an animal model of HPC was established by exposing the adult BALB/c mice to acute repetitive hypoxia four times. Ultra-high liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) in combination with univariate and multivariate statistical analyses was employed to deciphering metabolic changes associated with HPC in hippocampus tissue. MetaboAnalyst 3.0 was used to construct HPC related metabolic pathways. Results: The significant metabolic differences in hippocampus between the HPC groups and control were observed, indicating that HPC mouse model was successfully established and HPC could caused significant metabolic changes. Several key metabolic pathways were found to be acutely perturbed, including phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, phenylalanine metabolism, glutathione metabolism, alanine, aspartate and glutamate metabolism, tyrosine metabolism, tryptophan metabolism, purine metabolism, citrate cycle, and glycerophospholipid metabolism. Conclusion: The results of the present study provided novel insights into the mechanisms involved in the acclimatization of organisms to hypoxia, and demonstrated the neuroprotective mechanism of HPC.

15.
Hypertension ; 65(2): 414-20, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25421979

RESUMO

Activation of pulmonary adventitial fibroblasts plays a key role in the pulmonary vascular remodeling in hypoxic pulmonary hypertension. Previous studies showed that miRNAs participated in the regulation of fibroblast activation. This study explored the role of miR-29 in the activation of pulmonary adventitial fibroblasts and the therapeutic potential in hypoxic pulmonary hypertension. We found that hypoxia-induced pulmonary adventitial fibroblasts activation was accompanied with a drastic decrease of miR-29a-3p expression. Knockdown of hypoxia-inducible factor-1 α or Smad3 reversed the hypoxia-induced decrease of miR-29-3p in cultured pulmonary adventitial fibroblasts. In vitro, miR-29a-3p mimic inhibited the hypoxia-induced proliferation, migration, and secretion of pulmonary adventitial fibroblasts, suppressed the hypoxia-induced expression of α-smooth muscle actin and extracellular matrix collagen in pulmonary adventitial fibroblasts; however, miR-29a-3p inhibitor mimicked the effect of hypoxia on the activation of pulmonary adventitial fibroblasts. Further studies revealed that preventative or therapeutic administration of miR-29a-3p significantly decreased pulmonary artery pressure and right ventricle hypertrophy index and ameliorated pulmonary vascular remodeling in hypoxic pulmonary hypertension rats. These findings suggest that miR-29a-3p regulates the activation and phenotype of pulmonary adventitial fibroblasts in hypoxia and has preventative and therapeutic potential in hypoxic pulmonary hypertension.


Assuntos
Fibroblastos/efeitos dos fármacos , Vetores Genéticos/uso terapêutico , Hipertensão Pulmonar/prevenção & controle , Hipertrofia Ventricular Direita/prevenção & controle , Hipóxia/complicações , Pulmão/patologia , MicroRNAs/uso terapêutico , Remodelação Vascular/efeitos dos fármacos , Túnica Adventícia/patologia , Animais , Sequência de Bases , Células Cultivadas , Dependovirus/genética , Regulação para Baixo , Proteínas da Matriz Extracelular/biossíntese , Proteínas da Matriz Extracelular/genética , Fibroblastos/fisiologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Terapia Genética , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/etiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , MicroRNAs/genética , MicroRNAs/fisiologia , Dados de Sequência Molecular , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/fisiologia , Transfecção , Remodelação Vascular/fisiologia
16.
Diabetes ; 64(3): 785-95, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25277397

RESUMO

We have shown that hypoxia reduces plasma insulin, which correlates with corticotropin-releasing hormone (CRH) receptor 1 (CRHR1) in rats, but the mechanism remains unclear. Here, we report that hypobaric hypoxia at an altitude of 5,000 m for 8 h enhances rat plasma CRH, corticosterone, and glucose levels, whereas the plasma insulin and pancreatic ATP/ADP ratio is reduced. In islets cultured under normoxia, CRH stimulated insulin release in a glucose- and CRH-level-dependent manner by activating CRHR1 and thus the cAMP-dependent protein kinase pathway and calcium influx through L-type channels. In islets cultured under hypoxia, however, the insulinotropic effect of CRH was inactivated due to reduced ATP and cAMP and coincident loss of intracellular calcium oscillations. Serum and glucocorticoid-inducible kinase 1 (SGK1) also played an inhibitory role. In human volunteers rapidly ascended to 3,860 m, plasma CRH and glucose levels increased without a detectable change in plasma insulin. By contrast, volunteers with acute mountain sickness (AMS) exhibited a marked decrease in HOMA insulin sensitivity (HOMA-IS) and enhanced plasma CRH. In conclusion, hypoxia may attenuate the CRH-insulinotropic effect by reducing cellular ATP/ADP ratio, cAMP and calcium influx, and upregulated SGK1. Hypoxia may not affect HOMA-IS in healthy volunteers but reduces it in AMS volunteers.


Assuntos
Altitude , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia , Hipóxia/sangue , Hipóxia/metabolismo , Insulina/metabolismo , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Cálcio/metabolismo , Corticosterona/sangue , Hormônio Liberador da Corticotropina/sangue , AMP Cíclico , Humanos , Hidrocortisona/sangue , Insulina/sangue , Masculino , Pâncreas/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Adulto Jovem
17.
Chest ; 147(4): 969-978, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25375801

RESUMO

BACKGROUND: Although the mechanisms and pathways mediating ARDS have been studied extensively, less attention has been given to the mechanisms and pathways that counteract injury responses. This study found that the apelin-APJ pathway is an endogenous counterinjury mechanism that protects against ARDS. METHODS: Using a rat model of oleic acid (OA)-induced ARDS, the effects of ARDS on apelin and APJ receptor expressions and on APJ receptor binding capacity were examined. The protective effect of activating the apelin-APJ pathway against OA- or lipopolysaccharide (LPS)-induced ARDS was evaluated. RESULTS: ARDS was coupled to upregulations of the apelin and APJ receptor. Rats with OA-induced ARDS had higher lung tissue levels of apelin proprotein and APJ receptor expressions; elevated plasma, BAL fluid (BALF), and lung tissue levels of apelin-36 and apelin-12/13; and an increased apelin-APJ receptor binding capacity. Upregulation of the apelin-APJ system has important pathophysiologic function. Stimulation of the apelin-APJ signaling using receptor agonist apelin-13 alleviated, whereas inhibition of the apelin-APJ signaling using receptor antagonist [Ala]-apelin-13 exacerbated, OA-induced lung pathologies, extravascular lung water accumulation, capillary-alveolar leakage, and hypoxemia. The APJ receptor agonist inhibited, and the APJ receptor antagonist augmented, OA-induced lung tissue and BALF levels of tumor necrosis factor-α and monocyte chemoattractant protein-1, and plasma and lung tissue levels of malondialdehyde. Postinjury treatment with apelin-13 alleviated lung inflammation and injury and improved oxygenation in OA- and LPS-induced lung injury. CONCLUSIONS: The apelin-APJ signaling pathway is an endogenous anti-injury and organ-protective mechanism that is activated during ARDS to counteract the injury response and to prevent uncontrolled lung injury.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Regulação para Cima , Lesão Pulmonar Aguda/prevenção & controle , Adipocinas , Animais , Apelina , Receptores de Apelina , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Masculino , Ratos , Transdução de Sinais
18.
Molecules ; 20(1): 325-34, 2014 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-25547729

RESUMO

Six sesquiterpenoids 1-6, including two new ones, an ent-daucane-type sesquiterpenoid, asperaculane A (1), and a nordaucane one, asperaculane B (2), and four known nordaucane derivatives, aculenes A-D 3-6, together with the known secalonic acid D (7), were isolated from a fermentation culture of the fungus Aspergillus aculeatus. Their structures and absolute configurations were established by analyses of their spectroscopic data, including 1D and 2D-NMR spectra, HR-ESIMS, electronic circular dichroism (ECD) data, and quantum chemical calculations. These metabolites were evaluated for in vitro cytotoxic activity against two cell lines, human cancer cell lines (HeLa) and one normal hamster cell line (CHO).


Assuntos
Aspergillus/química , Sesquiterpenos/isolamento & purificação , Animais , Células CHO , Linhagem Celular Tumoral , Dicroísmo Circular , Cricetinae , Cricetulus , Humanos , Espectroscopia de Ressonância Magnética , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Espectrometria de Massas por Ionização por Electrospray
19.
J Agric Food Chem ; 62(16): 3584-90, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24689437

RESUMO

Two new metabolites, an α-pyridone derivative, 3-hydroxy-2-methoxy-5-methylpyridin-2(1H)-one (1), and a ceramide derivative, 3-hydroxy-N-(1-hydroxy-3-methylpentan-2-yl)-5-oxohexanamide (2), and a new natural product, 3-hydroxy-N-(1-hydroxy-4-methylpentan-2-yl)-5-oxohexanamide (3), along with 15 known compounds including chaetoglobosin C (7) and chaetoglobosin F (8) were isolated from the solid culture of the endophytic fungus Botryosphaeria dothidea KJ-1, collected from the stems of white cedar (Melia azedarach L). The structures were elucidated on the basis of spectroscopic analysis (1D and 2D NMR experiments and by mass spectrometric measurements), and the structure of 1 was confirmed by X-ray single-crystal diffraction. These metabolites were evaluated in vitro for antimicrobial, antioxidant, and cytotoxicity activities. Pycnophorin (4) significantly inhibited the growth of Bacillus subtilis and Staphyloccocus aureus with equal minimum inhibitory concentration (MIC) values of 25 µM. Stemphyperylenol (5) displayed a potent antifungal activity against the plant pathogen Alternaria solani with MIC of 1.57 µM comparable to the commonly used fungicide carbendazim. Both altenusin (9) and djalonensone (10) showed markedly DPPH radical scavenging activities. In addition, stemphyperylenol (5) and altenuene (6) exhibited strong cytotoxicity against HCT116 cancer cell line with a median inhibitory concentration (IC50) value of 3.13 µM in comparison with the positive control etoposide (IC50 = 2.13 µM). This is the first report of the isolation of these compounds from the endophytic B. dothidea.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Ascomicetos/química , Citotoxinas/farmacologia , Endófitos/química , Fungicidas Industriais/farmacologia , Melia azedarach/microbiologia , Antibacterianos/química , Antibacterianos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Ascomicetos/metabolismo , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/metabolismo , Endófitos/metabolismo , Fungos/efeitos dos fármacos , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Metabolismo Secundário
20.
J Agric Food Chem ; 62(17): 3734-41, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24708412

RESUMO

In preceding studies, cultivation of Chaetomium globosum, an endophytic fungus in Ginkgo biloba, produced five cytochalasan mycotoxins, chaetoglobosins A, G, V, Vb, and C (1-5), in three media. In the present work, five known chaetoglobosins, C, E, F, Fex, and 20-dihydrochaetoglobosin A (5-9), together with the four known compounds (11-14), were isolated from the MeOH extracts of the solid culture of the same endophyte. The structures of these metabolites were elucidated on the basis of spectroscopic analysis. Treatment of chaetoglobosin F (7) with (diethylamino)sulfur trifluoride (DAST) in dichloromethane afforded an unexpected fluorinated chaetoglobosin, named chaetoglobosin Fa (10), containing an oxolane ring between C-20 and C-23. The phytotoxic effects of compounds 1, 3-8, and 10 were assayed on radish seedlings; some of these compounds (1, 3, and 6-8) significantly inhibited the growth of radish (Raphanus sativus) seedlings with inhibitory rates of >60% at a concentration of 50 ppm, which was comparable or superior to the positive control, glyphosate. In addition, the cytotoxic activities against HCT116 human colon cancer cells were also tested, and compounds 1 and 8-10 showed remarkable cytotoxicity with IC50 values ranging from 3.15 to 8.44 µM, in comparison to the positive drug etoposide (IC50 = 2.13 µM). The epoxide ring between C-6 and C-7 or the double bond at C-6(12) led to a drastically increased cytotoxicity, and chaetoglobosin Fa (10) displayed a markedly increased cytotoxicity but decreased phytotoxicity.


Assuntos
Chaetomium/metabolismo , Citotoxinas/toxicidade , Endófitos/metabolismo , Ginkgo biloba/microbiologia , Alcaloides Indólicos/metabolismo , Alcaloides Indólicos/toxicidade , Micotoxinas/metabolismo , Micotoxinas/toxicidade , Raphanus/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chaetomium/química , Citotoxinas/metabolismo , Endófitos/química , Humanos , Raphanus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA