Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607967

RESUMO

BACKGROUND: With the recognition that noncancerous cells function as critical regulators of brain tumor growth, we recently demonstrated that neurons drive low-grade glioma initiation and progression. Using mouse models of neurofibromatosis type 1 (NF1)-associated optic pathway glioma (OPG), we showed that Nf1 mutation induces neuronal hyperexcitability and midkine expression, which activates an immune axis to support tumor growth, such that high-dose lamotrigine treatment reduces Nf1-OPG proliferation. Herein, we execute a series of complementary experiments to address several key knowledge gaps relevant to future clinical translation. METHODS: We leverage a collection of Nf1-mutant mice that spontaneously develop OPGs to alter both germline and retinal neuron-specific midkine expression. Nf1-mutant mice harboring several different NF1 patient-derived germline mutations were employed to evaluate neuronal excitability and midkine expression. Two distinct Nf1-OPG preclinical mouse models were used to assess lamotrigine effects on tumor progression and growth in vivo. RESULTS: We establish that neuronal midkine is both necessary and sufficient for Nf1-OPG growth, demonstrating an obligate relationship between germline Nf1 mutation, neuronal excitability, midkine production, and Nf1-OPG proliferation. We show anti-epileptic drug (lamotrigine) specificity in suppressing neuronal midkine production. Relevant to clinical translation, lamotrigine prevents Nf1-OPG progression and suppresses the growth of existing tumors for months following drug cessation. Importantly, lamotrigine abrogates tumor growth in two Nf1-OPG strains using pediatric epilepsy clinical dosing. CONCLUSIONS: Together, these findings establish midkine and neuronal hyperexcitability as targetable drivers of Nf1-OPG growth and support the use of lamotrigine as a potential chemoprevention or chemotherapy agent for children with NF1-OPG.

2.
Exp Brain Res ; 241(11-12): 2751-2763, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847304

RESUMO

Ischemic stroke followed by cerebral artery occlusion is a main cause of chronic disability worldwide. Recombinant human brain natriuretic peptide (rhBNP) has been reported to alleviate sepsis-induced cognitive dysfunction and brain I/R injury. However, the function and molecular mechanisms of rhBNP in ischemic brain injury have not been clarified. For establishment of an animal model of ischemic brain injury, C57BL/6 mice were treated with middle cerebral artery occlusion (MCAO) surgery for 1 h and reperfusion for 24 h. After subcutaneous injection of rhBNP into model mice, neurologic deficits were assessed by evaluating behavior of mice according to Longa scoring system, and TTC staining was utilized to determine the brain infarct size of mice. The levels of oxidative stress markers, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA), were detected in hippocampal tissues of mice by corresponding kits. Cell apoptosis in hippocampus tissues was examined by TUNEL staining. Protein levels of antioxidant enzymes (HO-1 and NQO1) in cerebral cortex, apoptotic markers (Bax, Bcl-2, and cleaved caspase), and PI3K/AKT pathway-associated factors in hippocampus were tested by western blot analysis. The results revealed that injection of rhBNP decreased neurologic deficit scores, the percent of brain water content, and infarct volume. Additionally, rhBNP downregulated MDA level, upregulated the levels of SOD, CAT, and GSH in hippocampus of mice, and increased protein levels of HO-1 and NQO1 in the cortex. Cell apoptosis in hippocampus tissues of model mice was inhibited by rhBNP which was shown as the reduced TUNEL-positive cells, the decreased Bax, cleaved caspase-3, and cleaved caspase-9 protein levels, and the enhanced Bcl-2 protein level. In addition, rhBNP treatment activated the PI3K/AKT signaling pathway and upregulated the protein levels of HO-1 and NRF2. Overall, rhBNP activates the PI3K/AKT/HO-1/NRF2 pathway to attenuate ischemic brain injury in mice after MCAO by suppression of cell apoptosis and oxidative stress.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Camundongos , Humanos , Animais , Peptídeo Natriurético Encefálico/farmacologia , Peptídeo Natriurético Encefálico/uso terapêutico , Peptídeo Natriurético Encefálico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína X Associada a bcl-2/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Superóxido Dismutase/metabolismo
3.
Hum Mol Genet ; 32(24): 3342-3352, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712888

RESUMO

Single nucleotide variants in the general population are common genomic alterations, where the majority are presumed to be silent polymorphisms without known clinical significance. Using human induced pluripotent stem cell (hiPSC) cerebral organoid modeling of the 1.4 megabase Neurofibromatosis type 1 (NF1) deletion syndrome, we previously discovered that the cytokine receptor-like factor-3 (CRLF3) gene, which is co-deleted with the NF1 gene, functions as a major regulator of neuronal maturation. Moreover, children with NF1 and the CRLF3L389P variant have greater autism burden, suggesting that this gene might be important for neurologic function. To explore the functional consequences of this variant, we generated CRLF3L389P-mutant hiPSC lines and Crlf3L389P-mutant genetically engineered mice. While this variant does not impair protein expression, brain structure, or mouse behavior, CRLF3L389P-mutant human cerebral organoids and mouse brains exhibit impaired neuronal maturation and dendrite formation. In addition, Crlf3L389P-mutant mouse neurons have reduced dendrite lengths and branching, without any axonal deficits. Moreover, Crlf3L389P-mutant mouse hippocampal neurons have decreased firing rates and synaptic current amplitudes relative to wild type controls. Taken together, these findings establish the CRLF3L389P variant as functionally deleterious and suggest that it may be a neurodevelopmental disease modifier.


Assuntos
Células-Tronco Pluripotentes Induzidas , Criança , Humanos , Animais , Camundongos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo , Receptores de Citocinas/metabolismo , Nucleotídeos/metabolismo
4.
Dev Cell ; 58(2): 81-93, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36693322

RESUMO

Similar to their pivotal roles in nervous system development, neurons have emerged as critical regulators of cancer initiation, maintenance, and progression. Focusing on nervous system tumors, we describe the normal relationships between neurons and other cell types relevant to normal nerve function, and discuss how disruptions of these interactions promote tumor evolution, focusing on electrical (gap junctions) and chemical (synaptic) coupling, as well as the establishment of new paracrine relationships. We also review how neuron-tumor communication contributes to some of the complications of cancer, including neuropathy, chemobrain, seizures, and pain. Finally, we consider the implications of cancer neuroscience in establishing risk for tumor penetrance and in the design of future anti-tumoral treatments.


Assuntos
Neoplasias do Sistema Nervoso , Neurônios , Humanos , Neurônios/metabolismo , Junções Comunicantes/metabolismo , Neoplasias do Sistema Nervoso/metabolismo
5.
Front Endocrinol (Lausanne) ; 13: 892811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574018

RESUMO

Objective: Iron overload plays an important role in the pathogenesis of diabetes and acute kidney injury (AKI). The aim of this present study was to explore the relationship between iron metabolism and AKI in patients with diabetes. Methods: The clinical data of diabetes patients from MIMIC-III database in intensive care unit (ICU) were retrospectively analyzed. Regression analyses were used to explore the risk factors of AKI and all-cause death in critical patients with diabetes. Area under the receiver operating characteristic curves (AUROCs) were used to analyze serum ferritin (SF), and regression model to predict AKI in critical patients with diabetes. All diabetes patients were followed up for survival at 6 months, and Kaplan-Meier curves were used to compare the survival rate in patients with different SF levels. Results: A total of 4,997 diabetic patients in ICU were enrolled, with a male-to-female ratio of 1.37:1 and a mean age of 66.87 ± 12.74 years. There were 1,637 patients in the AKI group (32.8%) and 3,360 patients in the non-AKI group. Multivariate logistic regression showed that congestive heart failure (OR = 2.111, 95% CI = 1.320-3.376), serum creatinine (OR = 1.342, 95% CI = 1.192-1.512), Oxford Acute Severity of Illness Score (OR = 1.075, 95% CI = 1.045-1.106), increased SF (OR = 1.002, 95% CI = 1.001-1.003), and decreased transferrin (OR = 0.993, 95% CI = 0.989-0.998) were independent risk factors for AKI in critical patients with diabetes. Multivariate Cox regression showed that advanced age (OR = 1.031, 95% CI = 1.025-1.037), AKI (OR = 1.197, 95% CI = 1.011-1.417), increased Sequential Organ Failure Assessment score (OR = 1.055, 95% CI = 1.032-1.078), and increased SF (OR = 1.380, 95% CI = 1.038-1.835) were independent risk factors for 6-month all-cause death in critical diabetic patients. The AUROCs of SF and the regression model to predict AKI in critical patients with diabetes were 0.782 and 0.851, respectively. The Kaplan-Meier curve showed that the 6-month survival rate in SF-increased group was lower than that in SF-normal group (log-rank χ2 = 16.989, P < 0.001). Conclusion: Critically ill diabetic patients with AKI were easily complicated with abnormal iron metabolism. Increase of SF is an important risk factor for AKI and all-cause death in critically ill patients with diabetes.


Assuntos
Injúria Renal Aguda , Diabetes Mellitus , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Idoso , Estado Terminal , Diabetes Mellitus/epidemiologia , Feminino , Humanos , Ferro , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA