Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Ethnopharmacol ; 327: 117994, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437889

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ixeris sonchifolia alias Kudiezi, it was named Ixeris sonchifolia (Bunge) Hance, a synonym for Crepidiastrum sonchifolium (Bunge) Pak & Kawano in the https://www.iplant.cn/. And it was first published in J. Linn. Soc., Bot. 13: 108 (1873), which was named Ixeris sonchifolia (Maxim.) Hance in the MPNS (http://mpns.kew.org). As a widely distributed medicinal and edible wild plant, it possesses unique bitter-cold characteristics and constituents with various pharmacological activities. Its main antitumor substances, same as artemisinin and paclitaxel, are classified as terpenoids and have become research foci in recent years. However, its specific biological activity and role in antitumor treatment remain largely unclear. AIM OF THE STUDY: This study aimed to elucidate the molecular targets and potential mechanisms of hepatocellular carcinoma apoptosis induced by Ixeris sonchifolia. MATERIALS AND METHODS: We used network pharmacology methods to analyze and screen the active ingredients and possible underlying mechanisms of Ixeris sonchifolia in treating liver cancer and employed integrative time- and dose-dependent toxicity, transcriptomics, and molecular biology approaches to comprehensively verify the function of Ixeris sonchifolia extract (IsE) in human hepatoblastoma cell (HepG2) apoptosis and its potential mechanism. RESULTS: A total of 169 common targets were screened by network pharmacology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that IsE inhibited HepG2 cell activity in a time- and dose-dependent manner. Western blot analysis confirmed that IsE promoted HepG2 cell apoptosis by inhibiting the PI3K/AKT signaling pathway and that the PI3K/AKT inhibitor LY294002 also substantially enhanced IsE-induced apoptosis. The PI3K/AKT signaling pathway exhibited significant differences compared to that in the control group. CONCLUSION: Combining network pharmacology with experimental verification, IsE inhibited mitochondrial function and the PI3K/AKT pathway while inducing hepatoma cell apoptosis. IsE may have promising potential for liver cancer treatment and chemoprevention.


Assuntos
Asteraceae , Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Farmacologia em Rede , Apoptose , Simulação de Acoplamento Molecular
2.
J Viral Hepat ; 30(12): 951-958, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37735836

RESUMO

The HBV rtA181T mutation is associated with an increased risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB). This study aimed to evaluate the mechanism by which rtA181T mutation increases the risk of HCC. We enrolled 470 CHB patients with rtA181T and rtA181V mutation in this study; 68 (22.15%) of the 307 patients with rtA181T mutation and 22 (13.5%) of the 163 patients with rtA181V mutation developed HCC (p < .05). The median follow-up periods were 8.148 and 8.055 years (p > .05). Serum HBV DNA and HBsAg levels in rtA181T-positive patients were similar to that in rtA181V-positive patients. However, the serum HBeAg levels in the rtA181T-positive patients were significantly higher than that in rtA181V-positive patients. In situ hybridization experiments showed that the HBV cccDNA and HBV RNA levels were significantly higher in the liver cancer tissues of patients with the rtA181T mutation compared to that in the tissues of patients with the rtA181V mutation. The percentage of anti-tumour hot-gene site mutations was significantly higher in the rtA181T-positive HCC liver tissue compared to that in the rtA181T-negative HCC liver tissue (7.65% and 4.3%, p < .05). This is the first study to use a large cohort and a follow-up of more than 5 years (average 8 years) to confirm that the rtA181T mutation increased the risk of HCC, and that it could be related to the increase in the mutation rate of hotspots of tumour suppressor genes (CTNNB1, TP53, NRAS and PIK3CA).


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Hepatite B Crônica/tratamento farmacológico , Antivirais/uso terapêutico , Taxa de Mutação , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Mutação , Genes Supressores de Tumor , DNA Viral/genética , Antígenos de Superfície da Hepatite B/genética
3.
iScience ; 26(8): 107334, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554435

RESUMO

Hedgehog (Hh) signaling mediated by transcription factor Ci/Gli plays a vital role in embryonic development and adult tissue homeostasis in invertebrates and vertebrates, whose dysregulation leads to many human disorders, including cancer. However, till now, cofactors of Ci/Gli which can affect tumorigenesis are not well known. Here, through genetic screen, we find overexpression of active Ci alone is not sufficient to generate tumor-like eye phenotype in Drosophila, however, its overexpression combined with knockdown of hib causes a striking tumor-like big eye phenotype. Mechanistically, HIB/SPOP inhibits Ci/Gli-mediated tumorigenesis by modulating the RNA polymerase II (RNAPII) components Rpb3/Rpb7 stabilities in E3 ligase dependent manner. In addition, Ci/Gli can promote HIB/SPOP-mediated Rpb7/Rpb3 degradation. Taken together, our results indicate Ci/Gli needs to hook up with suitable RNAPII together to achieve the tumor-like eye phenotype and HIB/SPOP plays dual roles through controlling Ci/Gli and Rpb3/Rpb7 protein stabilities to temper Ci/Gli/RNAPII-mediated tumorigenesis.

4.
Ecotoxicol Environ Saf ; 262: 115224, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37413964

RESUMO

Dietary antioxidants, including 2,6-di-tert-butyl-hydroxytoluene (BHT), α-tocopherol (αT) and tea polyphenol (TP), have been widely used in food. However, no data about the effect of food antioxidants on PFOA excretion were available. In this study, excretion of PFOA toward mice (four mice in each group) under the influence of co-ingested food antioxidants (i.e., BHT, αT, and TP) were investigated, and mechanism involved in excretion of PFOA, including RNA expression of uptake and efflux transporters in kidneys and liver involved in PFOA transport and intestinal permeability were also investigated. Chronic exposure to BHT (1.56 mg/kg) increased urinary PFOA excretion from 1795 ± 340 ng/mL (control) to 3340 ± 29.9 ng/mL (BHT treatment). TP treatment (12.5 mg/kg) decreased urinary excretion of PFOA, i.e., with a decrease percentage of 70% compared to the control. Organic anion transporting polypeptides (Oatps) act as uptake transporter mediate renal elimination or reabsorption of PFOA in the kidney. The decrease in urinary excretion of PFOA under TP treatment was associated with significantly (p < 0.05) enhanced expression of Oatp1a1 in the kidney (1.78 ± 0.58 vs 1.00 ± 0.18 in control), which facilitated renal reabsorption of PFOA and in turn decreased urinary excretion of PFOA. αT treatment (12.5 mg/kg) increased fecal PFOA excretion with a value of 228 ± 95.8 ng/g vs control (96.8 ± 22.7 ng/g). Mechanistic investigation revealed that αT treatment reduced intestinal permeability, resulting in increased fecal PFOA excretion.

5.
World J Hepatol ; 15(4): 460-476, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37206651

RESUMO

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, accounting for 75%-85% of cases. Although treatments are given to cure early-stage HCC, up to 50%-70% of individuals may experience a relapse of the illness in the liver after 5 years. Research on the fundamental treatment modalities for recurrent HCC is moving significantly further. The precise selection of individuals for therapy strategies with established survival advantages is crucial to ensuring better outcomes. These strategies aim to minimize substantial morbidity, support good life quality, and enhance survival for patients with recurrent HCC. For individuals with recurring HCC after curative treatment, no approved therapeutic regimen is currently available. A recent study presented novel approaches, like immunotherapy and antiviral medication, to improve the prognosis of patients with recurring HCC with the apparent lack of data to guide the clinical treatment. The data supporting several neoadjuvant and adjuvant therapies for patients with recurring HCC are outlined in this review. We also discuss the potential for future clinical and translational investigations.

7.
Cancer Gene Ther ; 29(11): 1616-1627, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35504951

RESUMO

The Apoptosis Stimulating Protein of p53 2 (ASPP2) is a heterozygous insufficient tumor suppressor; however, its molecular mechanism(s) in tumor suppression is not completely understood. ASPP2 plays an essential role in cell growth, as shown by liver hepatocellular carcinoma (LIHC) RNA-seq assay using the Cancer Genome Atlas (TCGA) and High-Throughput-PCR assay using ASPP2 knockdown cells. These observations were further confirmed by in vivo and in vitro experiments. Mechanistically, N-terminus ASPP2 interacted with Keratin 18 (k18) in vivo and in vitro. Interestingly, the RDIVpSGP motif of ASPP2 associates with 14-3-3 and promotes ASPP2/k18/14-3-3 ternary-complex formation which promotes MEK/ERK signal activation by impairing 14-3-3 and BRAF association. Additionally, ASPP2-rAd injection promotes paclitaxel-suppressed tumor growth by suppressing cell proliferation in the BALB/c nude mice model. ASPP2 and k18 were preferentially downregulated in Hepatocellular Carcinoma (HCC), which predicted poor prognosis in HCC patients. Overall, these findings suggested that ASPP2 promoted BRAF/MEK/ERK signal activation by promoting the formation of an ASPP2/k18/14-3-3 ternary complex via the RDIVpSGP motif at the N terminus. Moreover, this study provides novel insights into the molecular mechanism of tumor suppression in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Proto-Oncogênicas B-raf , Neoplasias Hepáticas/metabolismo , Queratina-18/metabolismo , Camundongos Nus , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células , Apoptose , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral
8.
Cell Death Dis ; 13(3): 213, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256589

RESUMO

Tumor heterogeneity has been associated with immunotherapy and targeted drug resistance in hepatocellular carcinoma (HCC). However, communications between tumor and cytotoxic cells are poorly understood to date. In the present study, thirty-one clusters of cells were discovered in the tumor tissues and adjacent tissues through single-cell sequencing. Moreover, the quantity and function exhaustion of cytotoxic cells was observed to be induced in tumors by the TCR and apoptosis signal pathways. Furthermore, granzyme failure of cytotoxic cells was observed in HCC patients. Importantly, the GZMA secreted by cytotoxic cells was demonstrated to interact with the F2R expressed by the tumor cells both in vivo and in vitro. This interaction induced tumor suppression and T cell-mediated killing of tumor cells via the activation of the JAK2/STAT1 signaling pathway. Mechanistically, the activation of JAK2/STAT1 signaling promoted apoptosis under the mediating effect of the LDPRSFLL motif at the N-terminus of F2R, which interacted with GZMA. In addition, GZMA and F2R were positively correlated with PD-1 and PD-L1 in tumor tissues, while the expressions of F2R and GZMA promoted PD-1 mAb-induced tumor suppression in both mouse model and HCC patients. Finally, in HCC patients, a low expression of GZMA and F2R in the tumor tissues was correlated with aggressive clinicopathological characteristics and poor prognosis. Collectively, GZMA-F2R communication inefficient induces deficient PD-1 mAb therapy and provide a completely novel immunotherapy strategy for tumor suppression in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Granzimas/metabolismo , Humanos , Imunoterapia , Janus Quinase 2/metabolismo , Neoplasias Hepáticas/metabolismo , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Fator de Transcrição STAT1/metabolismo , Linfócitos T/metabolismo
9.
Cancer Gene Ther ; 29(2): 202-214, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558702

RESUMO

Apoptosis-stimulating protein p53 2 (ASPP2) is a member of the p53-binding protein family, which is closely related to tumor development. However, the precise mechanism of ASPP2 in liver inflammation and tumorigenesis remains largely unclear. We aimed to characterize the mechanistic significance and clinical implication of ASPP2 in hepatitis and hepatocellular carcinoma (HCC). In this study, ASPP2 knockout (APKO) mice were generated to confirm the role of ASPP2 in the development of hepatitis and HCC. Liver tissues from mice were analyzed by immunohistochemistry, Western blotting, proteomic analysis, ChIP-Seq, and qRT-PCR to evaluate the role of ASPP2 in DEN-induced hepatitis and HCC. We found that APKO promoted the formation of hepatitis/hepatocarcinoma and the increased expression of proinflammatory factors. The proteomics and Western blotting results showed that APKO activated the NF-κB signaling pathway. Further, ChIP-Seq results revealed that NF-κB target genes were dramatically increased in APKO mice. In contrast, blockade of the NF-κB pathway by QNZ reduced the expression of proinflammatory factors and the susceptibility of APKO mice to DEN-induced hepatocarcinogenesis. These results suggested that the absence of ASPP2 activates the NF-κB pathway to promote the occurrence of DEN-induced hepatocarcinogenesis, indicating that ASPP2 may be a potential target for the treatment of hepatocarcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Supressoras de Tumor , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Proteômica , Proteínas Supressoras de Tumor/genética
11.
Mol Med Rep ; 22(4): 3541-3548, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32945391

RESUMO

A cDNA template with a high concentration is required to generate a high number of copies for accurate downstream high­throughput reverse transcription­quantitative PCR screening. However, with the traditional method, pre­amplification is not widely available. In the present study, a novel strategy to resolve the pre­amplification limitation has been developed. Total RNA was extracted using a commercially available RNeasy Micro kit then, the cDNA was synthesized using SuperScript® III First­Strand Synthesis system. PCR inhibitors (proteins and soluble salt ions) in the enriched cDNA were removed using saturated phenol­chloroform extraction. Finally, genes were evaluated using PCR amplification and the BioMark™ HD system. The positive detection rate of individual target gene expression reached 70.18%; however, it markedly decreased to 35.42% using PCR amplification without prior dilution. Next, the reverse transcription product was purified using saturated phenol­chloroform extraction, and the positive detection rate increased to 97.04%. Notably, the positive detection rate of cDNA prepared using this method of high­throughput and traditional PCR (97.04 vs. 96.6%) was not significantly different. In conclusion, the results demonstrate the novel method was an easy and reproducible method for performing robust and highly accurate targeted amplification.


Assuntos
Perfilação da Expressão Gênica/métodos , Hepatite B/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Células Hep G2 , Hepatite B/genética , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade
12.
Int J Oncol ; 57(1): 54-66, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32236573

RESUMO

Tumor biomarkers are important in the early screening, diagnosis, therapeutic evaluation, recurrence and prognosis prediction of tumors. Primary liver cancer is one of the most common malignant tumors; it has high incidence and mortality rates and seriously endangers human health. The main pathological types of primary liver cancer include hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and combined HCC­cholangiocarcinoma (cHCC­CC). In the present review, a systematic outline of the current biomarkers of primary liver cancer is presented, from conventional blood biomarkers, histochemical biomarkers and potential biomarkers to resistance­associated biomarkers. The important relationships are deeply elucidated between biomarkers and diagnosis, prognosis, clinicopathological features and resistance, as well as their clinical significance, in patients with the three main types of primary liver cancer. Moreover, a summary of several important biomarker signaling pathways is provided, which is helpful for studying the biological mechanism of liver cancer. The purpose of this review is to provide help for clinical or medical researchers in the early diagnosis, differential diagnosis, prognosis and treatment of HCC.


Assuntos
Neoplasias dos Ductos Biliares/diagnóstico , Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/diagnóstico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Diagnóstico Diferencial , Resistencia a Medicamentos Antineoplásicos , Detecção Precoce de Câncer/métodos , Humanos , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Prognóstico , Transdução de Sinais
13.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32075933

RESUMO

African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the "core domain" and the N-terminal "arm domain." The "arm domain" contains the residues from M1 to N83, and the "core domain" contains the residues from N84 to A273. A structure analysis reveals that the "core domain" shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the "arm domain" is unique to ASFV. Further, experiments indicated that the "arm domain" plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen.IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique "arm domain" has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.


Assuntos
Vírus da Febre Suína Africana/enzimologia , Cisteína Endopeptidases/química , Proteínas Virais/química , Febre Suína Africana/virologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Simulação de Dinâmica Molecular , Poliproteínas/química , Conformação Proteica , Domínios Proteicos , Proteína SUMO-1 , Alinhamento de Sequência , Sus scrofa , Suínos , Proteínas Virais/genética , Proteínas Virais/metabolismo
14.
Carbohydr Polym ; 231: 115690, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31888814

RESUMO

An oxidation-reduction responsive degradable highly elastic galactomannan hydrogel was synthesized from galactomannan (GA), N,N-bis (acryloyl) cysteamine (BAC) and acrylamide by grafting polymerization in aqueous solution. The microstructure, degradability and mechanical properties of the hydrogels were emphatically investigated using Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), ultraviolet spectroscopy and differential scanning calorimetry (DSC). The mechanical properties of hydrogels can be improved by adjusting the content of GA. Continuous cyclic compression tests showed that the hydrogel did not rupture under 60 %,70 %,80 % strain and quickly recovered to its original shape. The degradation rate and drug release rate of hydrogel can be adjusted by the concentration of the reductant and the reduction time. These hydrogels broaden the scope of application of GA and can be tuned with a broad range of mechanical, degradation and release properties and therefore hold potential applications in drug carriers, tissue engineering scaffolds, extracellular matrix and other fields.

15.
J Mol Cell Biol ; 11(9): 791-803, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30925584

RESUMO

Hedgehog (Hh) signalling plays conserved roles in controlling embryonic development; its dysregulation causes many diseases including cancers. The G protein-coupled receptor Smoothened (Smo) is the key signal transducer of the Hh pathway, whose posttranslational regulation has been shown to be critical for its accumulation and activation. Ubiquitination has been reported an essential posttranslational regulation of Smo. Here, we identify a novel E3 ligase of Smo, Herc4, which binds to Smo, and regulates Hh signalling by controlling Smo ubiquitination and degradation. Interestingly, our data suggest that Herc4-mediated Smo degradation is regulated by Hh in PKA-primed phosphorylation-dependent and independent manners.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Receptor Smoothened/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes , Lisossomos/metabolismo , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteólise , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
16.
Mol Med Rep ; 19(4): 2927-2934, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30720082

RESUMO

The aim of the current study was to investigate the effects and the molecular mechanisms of ARK5 in ovarian cancer cell invasion. The plasmid pGCsilencerU6/GFP/Neo­RNAi­ARK5 and the control vector with a scramble sequence were transfected into SKOV3 cells to establish ARK5­deficient SKOV3 cells (siARK5/SKOV3) and a control cell line (Scr/SKOV3), respectively. Reverse transcription­polymerase chain reaction (RT­PCR) and Western blot analysis were used to determine the mRNA and protein expression levels of ARK5. Migration and invasion abilities of SKOV3 cells were determined in chemotaxis and invasion assays, respectively. The epidermal growth factor­1 (EGF­1)­induced expression of matrix metallopeptidase (MMP)­2 and MMP­9, epithelial­mesenchymal transition (EMT) and phosphorylation of mechanistic target of rapamycin kinase (mTOR) in siARK5/SKOV3 and Scr/SKOV3 cells were detected by western blot. RT­PCR and western blot analyses demonstrated that the expression of ARK5 was significantly downregulated in siARK5/SKOV3 cells at the mRNA and protein levels (P<0.01). The migration and invasion abilities of siARK5/SKOV3 cells were markedly decreased compared with Scr/SKOV3 cells (P<0.01). In addition, the results demonstrated that EGF­1­induced expression of MMP­2 and MMP­9, EMT and phosphorylation of mTOR were suppressed in siARK5/SKOV3 cells as compared with Scr/SKOV3 cells (P<0.01). The current study demonstrated that ARK5 is a critical factor involved in SKOV3 cell invasion and ARK5 increases invasive potential by promoting EMT and activating the Akt­mTOR­MMPs pathway.


Assuntos
Inativação Gênica , Neoplasias Ovarianas/genética , Proteínas Quinases/genética , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
17.
Biochem Biophys Res Commun ; 508(3): 769-774, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30528232

RESUMO

Apoptosis stimulated protein of p53-2 (ASPP2) induces the transcription of p53-targeted genes to stimulates its pro-apoptosis function. The poor chemotherapeutic sensitivity is associated with the decreased ASPP2 expression in many human cancers. Here, multiple genes real-time RT-PCR array and western blotting analysis show that ASPP2 suppress the expression of X-linked inhibitor of apoptosis protein (XIAP), determinant of chemoresistance in cancer, in hepatocellular carcinoma (HCC) in a p53-independent manner. Further experiments with ASPP2-rAd and ASPP2-Lv confirmed that ASPP2 enhanced sensitivity of sorafenib to HCC via suppressing XIAP expression. XIAP mainly found on the cytoplasm and perinuclear areas of ASPP2 over-expressed HepG2 cells, while both cytoplasm and nucleus in ASPP2 shut down HepG2 cells. The association of poor sensitivity of sorafenib and XIAP expression was also found both in ASPP2 shut down and overexpress mice, where liver tissue with decreased or increased ASPP2 displayed less or more apoptosis, respectively. Finally, ASPP2 and XIAP expression analyzed in 43 hepatocellular carcinoma tumors and 44 adjacent normal tissues from 38 hepatocellular carcinoma patients for fully understand their expression within HCC patients. Compared with the tumor tissues, ASPP2 mRNA levels were increased, and XIAP levels decreased in the adjacent normal tissues. Taken together, XIAP suppressed ASPP2 increased tumor sensitivity to chemotherapy in a p53-independent manner, which was associated with chemotherapy resistance, suggesting that p53 activation and XIAP suppression were two independent ways that ASPP2 enhance the sensitivity of chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Regulação para Baixo , Neoplasias Hepáticas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Hepatocelular/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
18.
Oncol Lett ; 15(5): 7837-7845, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29725474

RESUMO

Telocinobufagin (TBG), an active ingredient of Venenumbufonis, exhibits an immunomodulatory activity. However, its antimetastatic activity in breast cancer remains unknown. The present study investigated whether TBG prevents breast cancer metastasis and evaluated its regulatory mechanism. TBG inhibited the migration and invasion of 4T1 breast cancer cells. Furthermore, TBG triggered the collapse of F-actin filaments in breast cancer. The epithelial-mesenchymal transition (EMT) markers, vimentin and fibronectin, were downregulated following TBG treatment. However, E-cadherin was upregulated following TBG treatment. Snail, a crucial transcriptional factor of EMT, was downregulated following TBG treatment. Signaling pathway markers, including phosphorylated protein kinase B (P-Akt), p-mechanistic target of rapamycin (mTOR) and p-extracellular signal-regulated kinase (ERK), were decreased following TBG treatment. The same results were obtained from in vivo experiments. In conclusion, in vitro and in vivo experiments reveal that TBG inhibited migration, invasion and EMT via the phosphoinositide 3-kinase (PI3K)/Akt/ERK/Snail signaling pathway in breast cancer.

19.
Cancer Invest ; 34(6): 286-92, 2016 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-27348718

RESUMO

Sarcomatoid carcinoma is a biphasic neoplasm composed of highly complex, intimately admixed malignant epithelial and mesenchymal elements. We herein report a rare case of cutaneous metastasis of pulmonary sarcomatoid carcinoma that contains liposarcomatous, rhabdosarcomatous and chondrosarcomatous heterologous differentiation, and review relevant literatures to lead to a better understanding of this rare but highly aggressive tumor.


Assuntos
Carcinoma/patologia , Neoplasias Pulmonares/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/secundário , Idoso , Biomarcadores , Biópsia , Carcinoma/diagnóstico , Carcinoma/epidemiologia , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiologia , Masculino , Neoplasias Cutâneas/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA