Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 326: 117912, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38387682

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Papillary thyroid carcinoma (PTC) is the predominant form of thyroid cancer with a rising global incidence. Despite favorable prognoses, a significant recurrence rate persists. Dioscorea bulbifera L. (DBL), a traditional Chinese medicine, has been historically used for thyroid-related disorders. However, its therapeutic effects and mechanisms of action on PTC remain unclear. AIM OF THE STUDY: To explore the potential therapeutic effects, principal active components, and molecular mechanisms of DBL in the treatment of PTC through network pharmacology and molecular docking, with experimental validation conducted to corroborate these findings. MATERIALS AND METHODS: The Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) was utilized as a systematic tool for collecting and screening the phytochemical components of DBL, and for establishing associations between these components and molecular targets. Based on this, network data was visually processed using Cytoscape software (version 3.8.0). Concurrently, precise molecular docking studies of the principal active components of DBL and their corresponding targets were conducted using Autodock software. Additionally, PTC-related genes were selected through the GeneCards and GEO databases. We further employed the DAVID bioinformatics resources to conduct comprehensive Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on the intersecting genes between DBL and PTC. These analyses aid in predicting the potential therapeutic actions of DBL on PTC and its mechanisms of action. To validate these findings, corresponding in vitro experimental studies were also conducted. RESULTS: In this investigation, 14 bioactive compounds of DBL and 195 corresponding molecular targets were identified, with 127 common targets shared between DBL and PTC. Molecular docking revealed strong binding affinities between major bioactive compounds and target proteins. GO enrichment analysis unveiled key processes involved in DBL's action. KEGG analysis highlighted DBL's modulation of the PI3K/AKT signaling pathway. Experimental outcomes demonstrated DBL's potential in inhibiting PTC cell proliferation and migration, suppressing PI3K/AKT pathway activation, and promoting ferroptosis. CONCLUSION: In conclusion, DBL offers a multifaceted therapeutic approach for PTC, targeting multiple molecular entities and influencing diverse biological pathways. Network pharmacology and molecular docking shed light on DBL's potential utility in PTC treatment, substantiated by experimental validation. This study contributes valuable insights into using DBL as a promising therapeutic agent for PTC management.


Assuntos
Dioscorea , Medicamentos de Ervas Chinesas , Ferroptose , Neoplasias da Glândula Tireoide , Câncer Papilífero da Tireoide/tratamento farmacológico , Câncer Papilífero da Tireoide/genética , Farmacologia em Rede , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
2.
Curr Med Sci ; 41(4): 746-756, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34403100

RESUMO

The use of an antibiotic with immunomodulatory properties could be fascinating in treating multifactorial inflammatory conditions such as ulcerative colitis (UC). We report our investigations into the immunomodulatory properties of levornidazole, the S-enantiomer of ornidazole, which displayed a tremendous therapeutic potential in UC induced by dextran sodium sulfate (DSS). Levornidazole administration to DSS-colitic mice attenuated the intestinal inflammatory process, with an efficacy better than that shown by 5-amino salicylic acid. This was evidenced by decreased disease activity index, ameliorated macroscopic and microscopic colon damages, and reduced expression of inflammatory cytokines. Additionally, levornidazole displayed anti-inflammatory activity through Caveolin-1-dependent reducing IL-1ß and IL-18 secretion by macrophages contributing to its improvement of the intestinal inflammation, as confirmed in vitro and in vivo. In conclusion, these results pointed out that the immunomodulatory effects of levornidazole played a vital role in ameliorating the intestinal inflammatory process, which would be crucial for the translation of its use into clinical settings.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Agentes de Imunomodulação/farmacologia , Macrófagos/efeitos dos fármacos , Ornidazol/farmacocinética , Animais , Caveolina 1/genética , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-18/genética , Interleucina-1beta/genética , Macrófagos/imunologia , Camundongos
3.
Int Immunopharmacol ; 88: 106898, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32866784

RESUMO

The NLRP3 inflammasome is an important mediator of inflammatory responses and its regulation is an active area of research. RalA is a Ras-like GTPase, which play pivotal roles in the biology of cells. So far, there have been very few studies on RalA regulating inflammatory responses. Bioinformatics analysis predicted that RalA might participate in the regulatory network of NLRP3 inflammasome, which has been confirmed in THP-1 macrophages. After virtual screening of compounds, it was found that levonidazole selected from our virtual small molecule compound library has the potential to bind to RalA. Of note, the interaction of RalA/levornidazole was verified by Surface Plasmon Resonance-Biacore T200, LC/MS analysis and Western blotting analysis. Molecular dynamics simulations revealed that the conformational changes of RalA might be regulated by levornidazole. Additionally, IL-1ß/IL-18 secretion from ATP + LPS stimulated THP-1-derived macrophages was RalA-dependently suppressed by levornidazole, suggesting that RalA might have an inhibitory effect on NLRP3 inflammasome activation. The results of co-immunoprecipitation and RalA depletion experiments showed that levornidazole could induce RalA to block the assembly of NLRP3/ASC/pro-caspase-1 complex, thereby reducing the levels of cleaved-caspase-1 and IL-1ß/IL-18 secretion. Our study has suggested an anti-inflammatory function of RalA and identified its targeting chemical compound. Overall, this study clarifies a novel pharmacological mechanism by which RalA/levornidazole inhibits NLRP3 inflammasome activation and IL-1ß/IL-18 secretion.


Assuntos
Inflamassomos/imunologia , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Ornidazol/farmacologia , Proteínas ral de Ligação ao GTP/genética , Animais , Feminino , Humanos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Células THP-1
4.
ACS Appl Bio Mater ; 3(9): 5872-5879, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021815

RESUMO

In this work, inspired by the self-cleaning surfaces of fish scales, we prepared a porous chitosan aerogel (CSA) through a simple freeze-drying process. With the three-dimensional interconnected microstructure, the aerogel was highly porous (porosity > 98.16%) and ultralight with a density ranging from 10.19 to 36.05 mg/cm3. The core/shell structure of the CS-hydrogel-coated/CS-aerogel core (CSHA) was fabricated through a simple spray process. The aerogel with low-adhesion CS-hydrogel-coating exhibited superoleophobicity (θoil ∼ 162°) under water and superhydrophilicity (θwater ∼ 0°) in oil. The hydrogel coating as a switch of the absorbent resists the oil phase and induces permeation of the water phase into the aerogel easily and quickly. The dry aerogel core with a porous structure has become a huge storage space. Taking advantage of this structure, an absorption capacity of 147 times could be obtained for water. The unique water absorption process along with switching between the aerogel and hydrogel gives the CSHA incredible potential for oil purification applications on site. Using the CSHA for oil purification, the purity of the obtained oil can be as high as 99.8%. Importantly, two facile approaches, including redissolving and drying, were applied to recycle the aerogels. The natural hydrophilic aerogels are made from dissolution and regeneration of chitosan powder, which is green, low-cost, simple and easy to scale-up. Using the as-obtained high-capacity recyclable CSA for oil/water separation, the mixture can be separated with high efficiency, making it a favorable candidate for applications in large-scale separation of oil-water mixtures in the future.

5.
World J Emerg Surg ; 13: 51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459824

RESUMO

Background: Post-cardiac arrest syndrome, which has no specific curative treatment, contributes to the high mortality rate of victims who suffer traumatic cardiac arrest (TCA) and initially can be resuscitated. In the present study, we investigated the potential of ulinastatin to mitigate multiple organ injury after resuscitation in a swine TCA model. Methods: Twenty-one male pigs were subjected to hemodynamic shock (40% estimated blood loss in 20 min) followed by cardiac arrest (electrically induced ventricular fibrillation) and respiratory suspension for 5 min, and finally manual resuscitation. At 5 min after resuscitation, pigs were randomized to receive 80,000 U/kg ulinastatin (n = 7) or the same volume of saline (n = 9) in the TCA group. Pigs in the sham group (n = 5) were not exposed to bleeding or cardiac arrest. At baseline and at 1, 3, and 6 h after the return of spontaneous circulation, blood samples were collected and assayed for tumor necrosis factor-alpha, interleukin 6, and other indicators of organ injury. At 24 h after resuscitation, pigs were sacrificed and apoptosis levels were assessed in samples of heart, brain, kidney, and intestine. Results: One pig died in the ulinastatin group and one pig died in the TCA group; the remaining animals were included in the final analysis. TCA and resuscitation caused significant increases in multiple organ function biomarkers in serum, increases in tumor necrosis factor-alpha, and interleukin 6 in serum and increases in the extent of apoptosis in key organs. All these increases were lower in the ulinastatin group. Conclusion: Ulinastatin may attenuate multiple organ injury after TCA, which should be explored in clinical studies.


Assuntos
Glicoproteínas/farmacologia , Parada Cardíaca/fisiopatologia , Interleucina-6/sangue , Insuficiência de Múltiplos Órgãos/prevenção & controle , Choque/fisiopatologia , Inibidores da Tripsina/farmacologia , Fator de Necrose Tumoral alfa/sangue , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Reanimação Cardiopulmonar/efeitos adversos , Modelos Animais de Doenças , Parada Cardíaca/sangue , Hemodinâmica , Masculino , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Choque/sangue , Suínos
6.
Mol Med Rep ; 17(1): 952-960, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29115630

RESUMO

Macrophages can be polarized into the inflammatory M1 lineage or the immunomodulatory M2 lineage, depending on the differential tissue microenvironment signaling, specific pathogens or cytokine stimulation. Tumor necrosis factor α­induced protein 8­like protein 2 (TIPE2) has been demonstrated to negatively regulate inflammation by inhibiting the Toll­like receptor (TLR) pathway. The present study utilized murine bone marrow derived macrophages (BMDMs) as the model of undifferentiated (M0) macrophages to study the roles of TIPE2 in the differential polarization status of BMDMs. It was observed that the expression levels of TIPE2 were diminished in M1 macrophages treated with lipopolysaccharide/interferon γ, and elevated in M2 macrophages treated with interleukin (IL)­4. BMDMs with TIPE2 overexpression exhibited defective M1 polarization and enhanced responses to IL­4 stimulation. TIPE2 impeded M1 polarization by interfering with mitogen­activated protein kinase kinase kinase 7­inhibitor of nuclear factor­κB kinase subunit ß and B cell receptor­associated protein­serine/threonine­protein kinase mTOR complex 1 (mTORC1) activation. TIPE2 overexpression accelerated IL­4 induced M2 polarization by dampening mTORC1 activation via the accelerated process of arginine to urea. Overall, these results define a key role for TIPE2 in macrophage polarization by impeding mTORC1 response.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Expressão Gênica , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA