RESUMO
PURPOSE: There are currently more than 480 primary immune deficiency (PID) diseases and about 7000 rare diseases that together afflict around 1 in every 17 humans. Computational aids based on data mining and machine learning might facilitate the diagnostic task by extracting rules from large datasets and making predictions when faced with new problem cases. In a proof-of-concept data mining study, we aimed to predict PID diagnoses using a supervised machine learning algorithm based on classification tree boosting. METHODS: Through a data query at the USIDNET registry we obtained a database of 2396 patients with common diagnoses of PID, including their clinical and laboratory features. We kept 286 features and all 12 diagnoses to include in the model. We used the XGBoost package with parallel tree boosting for the supervised classification model, and SHAP for variable importance interpretation, on Python v3.7. The patient database was split into training and testing subsets, and after boosting through gradient descent, the predictive model provides measures of diagnostic prediction accuracy and individual feature importance. After a baseline performance test, we used the Class Weighting Hyperparameter, or scale_pos_weight to correct for imbalanced classification. RESULTS: The twelve PID diagnoses were CVID (1098 patients), DiGeorge syndrome, Chronic granulomatous disease, Congenital agammaglobulinemia, PID not otherwise classified, Specific antibody deficiency, Complement deficiency, Hyper-IgM, Leukocyte adhesion deficiency, ectodermal dysplasia with immune deficiency, Severe combined immune deficiency, and Wiskott-Aldrich syndrome. For CVID, the model found an accuracy on the train sample of 0.80, with an area under the ROC curve (AUC) of 0.80, and a Gini coefficient of 0.60. In the test subset, accuracy was 0.76, AUC 0.75, and Gini 0.51. The positive feature value to predict CVID was highest for upper respiratory infections, asthma, autoimmunity and hypogammaglobulinemia. Features with the highest negative predictive value were high IgE, growth delay, abscess, lymphopenia, and congenital heart disease. For the rest of the diagnoses, accuracy stayed between 0.75 and 0.99, AUC 0.46-0.87, Gini 0.07-0.75, and LogLoss 0.09-8.55. DISCUSSION: Clinicians should remember to consider the negative predictive features together with the positives. We are calling this a proof-of-concept study to continue with our explorations. A good performance is encouraging, and feature importance might aid feature selection for future endeavors. In the meantime, we can learn from the rules derived by the model and build a user-friendly decision tree to generate differential diagnoses.
Assuntos
Doenças da Imunodeficiência Primária , Síndrome de Wiskott-Aldrich , Humanos , Diagnóstico Diferencial , Aprendizado de Máquina , Mineração de DadosRESUMO
Rationale: Eosinophilic gastrointestinal disorders (EGID), including eosinophilic esophagitis (EoE), are inflammatory disorders of the gastrointestinal mucosa mediated by complex immune mechanisms. Although there have been initial reports of EGID in patients with inborn errors of immunity (IEI), little is known about the presentation of EGID in immunodeficient individuals. Methods: We queried the U.S. Immunodeficiency Network (USIDNET) for patient records including the terms eosinophilic esophagitis, gastritis, enteritis, or colitis. We analyzed 74 patient records from the database, including diagnoses, demographics, infectious history, laboratory findings, genetic studies, therapeutic interventions, and clinical outcomes. Results: We examined 74 patient records. A total of 61 patients had isolated EoE, and 13 had distal gastrointestinal involvement consistent with EGID. The most common IEI were common variable immunodeficiency (43.2%), some form of combined immunodeficiency (21.6%), chronic granulomatous disease (8.1%), hyper-IgE syndrome (6.8%), and autoimmune lymphoproliferative syndrome (6.8%). The median age at presentation with IEI was 0.5 years (IQR 1.725, max 39 years) and 56.76% were male. Approximately 20% of the patients in the cohort received a hematopoietic stem cell transplantation for treatment of IEI, but the timing of the HSCT in relationship to the EGID diagnosis was unknown. Conclusions: Here, we report EGID in a diverse cohort of IEI patients, suggesting that both non-EoE EGID and EoE can be seen as comorbid conditions with a variety of IEI. Our data suggests that EGID may be more common in patients with IEI than would be expected based on estimates of EGID in the general population.
Assuntos
Enterite , Esofagite Eosinofílica , Gastrite , Enterite/epidemiologia , Enterite/terapia , Eosinofilia , Esofagite Eosinofílica/diagnóstico , Esofagite Eosinofílica/epidemiologia , Esofagite Eosinofílica/terapia , Feminino , Gastrite/diagnóstico , Gastrite/epidemiologia , Humanos , Masculino , Sistema de RegistrosRESUMO
The earliest conceptual history of gene therapy began with the recognition of DNA as the transforming substance capable of changing the phenotypic character of a bacterium and then as the carrier of the genomic code. Early studies of oncogenic viruses that could insert into the mammalian genome led to the concept that these same viruses might be engineered to carry new genetic material into mammalian cells, including human hematopoietic stem cells (HSC). In addition to properly engineered vectors capable of efficient safe transduction of HSC, successful gene therapy required the development of efficient materials, methods, and equipment to procure, purify, and culture HSC. Increased understanding of the preparative conditioning of patients was needed to optimize the engraftment of genetically modified HSC. Testing concepts in pivotal clinical trials to assess the efficacy and determine the cause of adverse events has advanced the efficiency and safety of gene therapy. This article is a historical overview of the separate threads of discovery that joined together to comprise our current state of gene therapy targeting HSC.
Assuntos
Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Animais , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas , Humanos , Lentivirus/genética , Mamíferos/genética , Transdução GenéticaRESUMO
The study of early T-cell development in humans is challenging because of limited availability of thymic samples and the limitations of in vitro T-cell differentiation assays. We used an artificial thymic organoid (ATO) platform generated by aggregating a DLL4-expressing stromal cell line (MS5-hDLL4) with CD34+ cells isolated from bone marrow or mobilized peripheral blood to study T-cell development from CD34+ cells of patients carrying hematopoietic intrinsic or thymic defects that cause T-cell lymphopenia. We found that AK2 deficiency is associated with decreased cell viability and an early block in T-cell development. We observed a similar defect in a patient carrying a null IL2RG mutation. In contrast, CD34+ cells from a patient carrying a missense IL2RG mutation reached full T-cell maturation, although cell numbers were significantly lower than in controls. CD34+ cells from patients carrying RAG mutations were able to differentiate to CD4+CD8+ cells, but not to CD3+TCRαß+ cells. Finally, normal T-cell differentiation was observed in a patient with complete DiGeorge syndrome, consistent with the extra-hematopoietic nature of the defect. The ATO system may help determine whether T-cell deficiency reflects hematopoietic or thymic intrinsic abnormalities and define the exact stage at which T-cell differentiation is blocked.
Assuntos
Células-Tronco Hematopoéticas , Linfopenia , Antígenos CD34 , Diferenciação Celular , Humanos , OrganoidesRESUMO
Chronic granulomatous disease (CGD), a primary immunodeficiency characterized by a deficient neutrophil oxidative burst and the inadequate killing of microbes, is well known to cause a significantly increased risk of invasive infection. However, infectious complications are not the sole manifestations of CGD; substantial additional morbidity is driven by noninfectious complications also. These complications can include, for example, a wide range of inflammatory diseases that affect the gastrointestinal tract, lung, skin, and genitourinary tract and overt autoimmune disease. These diseases can occur at any age and are especially problematic in adolescents and adults with CGD. Many of these noninfectious complications present a highly challenging therapeutic conundrum, wherein immunosuppression must be balanced against an already markedly increased risk of invasive fungal and bacterial infections. In this review, the myriad noninfectious complications of CGD are discussed, as are important gaps in our understanding of these processes, which warrant further investigation.
Assuntos
Granuloma/etiologia , Doença Granulomatosa Crônica/complicações , Doenças Inflamatórias Intestinais/etiologia , Pneumopatias/etiologia , Doenças Autoimunes/complicações , Diagnóstico Diferencial , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Pneumopatias/diagnósticoAssuntos
Linfócitos B/imunologia , Síndrome de Wiskott-Aldrich/imunologia , Humanos , Memória Imunológica , Imunofenotipagem , Fenótipo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/análise , Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/genéticaAssuntos
Adenosina Desaminase/genética , Imunoglobulina E/metabolismo , Imunodeficiência Combinada Severa/imunologia , Células Th2/imunologia , Adolescente , Adulto , Transplante de Medula Óssea , Células Cultivadas , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Citocinas/metabolismo , Terapia de Reposição de Enzimas , Feminino , Terapia Genética , Humanos , Imunoglobulina E/genética , Memória Imunológica , Lactente , Masculino , Mutação/genética , Fenótipo , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Adulto JovemRESUMO
The first human gene therapy experiment begun in September 1990 used a retroviral vector containing the human adenosine deaminase (ADA) cDNA to transduce mature peripheral blood lymphocytes from patients with ADA deficiency, an inherited disorder of immunity. Two patients who had been treated with intramuscular injections of pegylated bovine ADA (PEG-ADA) for 2 to 4 years were enrolled in this trial and each received a total of approximately 10(11) cells in 11 or 12 infusions over a period of about 2 years. No adverse events were observed. During and after treatment, the patients continued to receive PEG-ADA, although at a reduced dose. Ten years after the last cell infusion, approximately 20% of the first patient's lymphocytes still carry and express the retroviral gene, indicating that the effects of gene transfer can be remarkably long lasting. On the contrary, the persistence of gene-marked cells is very low (< 0.1%), and no expression of the transgene is detectable in lymphocytes from the second patient who developed persisting antibodies to components of the gene transfer system. Data collected from these original patients have provided novel information about the longevity of T lymphocytes in humans and persistence of gene expression in vivo from vectors driven by the Moloney murine leukemia virus long-terminal repeat (LTR) promoter. This long-term follow-up has also provided unique evidence supporting the safety of retroviral-mediated gene transfer and illustrates clear examples of both the potential and the pitfalls of gene therapy in humans.