Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Clin Invest ; 134(14)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833312

RESUMO

BACKGROUNDPredicting immune effector cell-associated neurotoxicity syndrome (ICANS) in patients infused with CAR T cells is still a conundrum. This complication, thought to be consequent to CAR T cell activation, arises a few days after infusion, when circulating CAR T cells are scarce and specific CAR T cell-derived biomarkers are lacking.METHODSCAR+ extracellular vesicle (CAR+EV) release was assessed in human CD19.CAR T cells cocultured with CD19+ target cells. A prospective cohort of 100 patients with B cell lymphoma infused with approved CD19.CAR T cell products was assessed for plasma CAR+EVs as biomarkers of in vivo CD19.CAR T cell activation. Human induced pluripotent stem cell-derived (iPSC-derived) neural cells were used as a model for CAR+EV-induced neurotoxicity.RESULTSIn vitro release of CAR+EVs occurs within 1 hour after target engagement. Plasma CAR+EVs are detectable 1 hour after infusion. A concentration greater than 132.8 CAR+EVs/µL at hour +1 or greater than 224.5 CAR+EVs/µL at day +1 predicted ICANS in advance of 4 days, with a sensitivity and a specificity outperforming other ICANS predictors. ENO2+ nanoparticles were released by iPSC-derived neural cells upon CAR+EV exposure and were increased in plasma of patients with ICANS.CONCLUSIONPlasma CAR+EVs are an immediate signal of CD19.CAR T cell activation, are suitable predictors of neurotoxicity, and may be involved in ICANS pathogenesis.TRIAL REGISTRATIONNCT04892433, NCT05807789.FUNDINGLife Science Hub-Advanced Therapies (financed by Health Ministry as part of the National Plan for Complementary Investments to the National Recovery and Resilience Plan [NRRP]: E.3 Innovative health ecosystem for APC fees and immunomonitoring).


Assuntos
Antígenos CD19 , Vesículas Extracelulares , Imunoterapia Adotiva , Linfoma de Células B , Humanos , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Antígenos CD19/imunologia , Linfoma de Células B/imunologia , Linfoma de Células B/terapia , Linfoma de Células B/sangue , Adulto , Idoso , Receptores de Antígenos Quiméricos/imunologia , Estudos Prospectivos
2.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891075

RESUMO

Subcutaneous adipocytes are crucial for mammary gland epithelial development during pregnancy. Our and others' previous data have suggested that adipo-epithelial transdifferentiation could play a key role in the mammary gland alveolar development. In this study, we tested whether adipo-epithelial transdifferentiation occurs in vitro. Data show that, under appropriate co-culture conditions with mammary epithelial organoids (MEOs), mature adipocytes lose their phenotype and acquire an epithelial one. Interestingly, even in the absence of MEOs, extracellular matrix and diffusible growth factors are able to promote adipo-epithelial transdifferentiation. Gene and protein expression studies indicate that transdifferentiating adipocytes exhibit some characteristics of milk-secreting alveolar glands, including significantly higher expression of milk proteins such as whey acidic protein and ß-casein. Similar data were also obtained in cultured human multipotent adipose-derived stem cell adipocytes. A miRNA sequencing experiment on the supernatant highlighted mir200c, which has a well-established role in the mesenchymal-epithelial transition, as a potential player in this phenomenon. Collectively, our data show that adipo-epithelial transdifferentiation can be reproduced in in vitro models where this phenomenon can be investigated at the molecular level.


Assuntos
Adipócitos , Transdiferenciação Celular , Células Epiteliais , Humanos , Feminino , Adipócitos/citologia , Adipócitos/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/citologia , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Organoides/citologia , Organoides/metabolismo , Técnicas de Cocultura , Camundongos , Modelos Biológicos
3.
Cell Death Discov ; 10(1): 184, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643201

RESUMO

Recent literature shows that loss of replicative ability and acquisition of a proinflammatory secretory phenotype in senescent cells is coupled with the build-in of nucleic acids in the cytoplasm. Its implication in human age-related diseases is under scrutiny. In human endothelial cells (ECs), we assessed the accumulation of intracellular nucleic acids during in vitro replicative senescence and after exposure to high glucose concentrations, which mimic an in vivo condition of hyperglycemia. We showed that exposure to high glucose induces senescent-like features in ECs, including telomere shortening and proinflammatory cytokine release, coupled with the accrual in the cytoplasm of telomeres, double-stranded DNA and RNA (dsDNA, dsRNA), as well as RNA:DNA hybrid molecules. Senescent ECs showed an activation of the dsRNA sensors RIG-I and MDA5 and of the DNA sensor TLR9, which was not paralleled by the involvement of the canonical (cGAS) and non-canonical (IFI16) activation of the STING pathway. Under high glucose conditions, only a sustained activation of TLR9 was observed. Notably, senescent cells exhibit increased proinflammatory cytokine (IL-1ß, IL-6, IL-8) production without a detectable secretion of type I interferon (IFN), a phenomenon that can be explained, at least in part, by the accumulation of methyl-adenosine containing RNAs. At variance, exposure to exogenous nucleic acids enhances both IL-6 and IFN-ß1 expression in senescent cells. This study highlights the accrual of cytoplasmic nucleic acids as a marker of senescence-related endothelial dysfunction, that may play a role in dysmetabolic age-related diseases.

4.
Cells ; 12(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672222

RESUMO

Bone marrow mesenchymal stromal cells (BMSCs) are multipotent cells able to self-renew and differentiate, depending on the microenvironment, into adipocytes and osteoblasts. These cells have a limited number of replications and enter replicative senescence during in vitro expansion. The role of DNA methylation (DNAm) assumes importance in cell function and commitment; however, its exact contribution to BMSC differentiation and replicative senescence is still unclear. We performed a genome-wide DNAm analysis on BMSCs cultured in vitro at early passages and induced to differentiate into adipocytes and osteoblasts, and on replicative senescent BMSCs and HUVECs, to identify DNAm patterns of senescence and differentiation. We also compared BMSCs and HUVECs in replicative senescence and found that, in both cellular systems, genome-wide hypomethylation was accompanied by a higher-than-expected overlap of differentially methylated positions (DMPs) and concordance in terms of direction of the change. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on lineage-independent senescence-associated DMPs revealed 16 common pathways, including Insulin resistance, Molecule adhesion, and Wnt/ß-catenin signaling. In both adipogenesis and osteogenesis, we observed a general demethylation of CpG sites compared with undifferentiated BMSCs with a higher number of DMPs in osteogenesis. KEGG analysis resulted in 30 pathways enriched in osteoblasts and only 2 in adipocytes when compared to undifferentiated cells. When comparing differentiated BMSCs with senescent ones, osteogenesis exhibited a greater overlap with senescence in terms of number of DMPs and direction of methylation change compared to adipogenesis. In conclusion, this study may be useful for future research on general mechanisms that occur in replicative senescence and furthermore to identify trajectories of BMSC differentiation and common aspects of differentiated and senescent cells.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Metilação de DNA/genética , Senescência Celular/genética
5.
Healthcare (Basel) ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35742068

RESUMO

Assessing multiple domains of health in older adults requires multidimensional and large datasets. Consensus on definitions, measurement protocols and outcome measures is a prerequisite. The Physical Activity and Nutritional INfluences In Ageing (PANINI) Toolkit aims to provide a standardized toolkit of best-practice measures for assessing health domains of older adults with an emphasis on nutrition and physical activity. The toolkit was drafted by consensus of multidisciplinary and pan-European experts on ageing to standardize research initiatives in diverse populations within the PANINI consortium. Domains within the PANINI Toolkit include socio-demographics, general health, nutrition, physical activity and physical performance and psychological and cognitive health. Implementation across various countries, settings and ageing populations has proven the feasibility of its use in research. This multidimensional and standardized approach supports interoperability and re-use of data, which is needed to optimize the coordination of research efforts, increase generalizability of findings and ultimately address the challenges of ageing.

6.
Neuroendocrinology ; 112(6): 580-594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34348348

RESUMO

INTRODUCTION: Neuroendocrine transdifferentiation (NED) of prostate cancer (PC) cells is associated with the development of resistance to antiandrogen therapy and poor prognosis in patients with castration-resistant PC (CRPC). Many of the molecular events, involved in NED, appear to be mediated by epigenetic mechanisms. In this study, we evaluated the antitumor activity and epigenetic modulation of 2 epigenetic drugs, such as the demethylating agent 5-aza-2'-deoxycytidine (AZA) and the methyl donor S-adenosylmethionine (SAM), in 2 human CRPC cell lines with NED (DU-145 and PC-3). METHODS: The effects of AZA and SAM on cell viability, cell cycle, apoptosis, migration, and genome-wide DNA methylation profiling have been evaluated. RESULTS: Both drugs showed a prominent antitumor activity in DU-145 and PC-3 cells, through perturbation of cell cycle progression, induction of apoptosis, and inhibition of cell migration. AZA and SAM reversed NED in DU-145 and PC-3, respectively. Moreover, AZA treatment modified DNA methylation pattern in DU-145 cells, sustaining a pervasive hypomethylation of the genome, with a relevant effect on several pathways involved in the regulation of cell proliferation, apoptosis, and cell migration, in particular Wnt/ß-catenin. CONCLUSIONS: A relevant antitumor activity of these epigenetic drugs on CRPC cell lines with NED opens a new scenario in the therapy of this lethal variant of PC.


Assuntos
Epigênese Genética , Neoplasias de Próstata Resistentes à Castração , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia
7.
Geroscience ; 43(4): 1975-1993, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34117600

RESUMO

Cadmium (Cd) accumulates with aging and is elevated in long-lived species. Metallothioneins (MTs), small cysteine-rich proteins involved in metal homeostasis and Cd detoxification, are known to be related to longevity. However, the relationship between Cd accumulation, the role of MTs, and aging is currently unclear. Specifically, we do not know if long-lived species evolved an efficient metal stress response by upregulating their MT levels to reduce the toxic effects of environmental pollutants, such as Cd, that accumulate over their longer life span. It is also unknown if the number of MT genes, their expression, or both protect the organisms from potentially damaging effects during aging. To address these questions, we reanalyzed several cross-species studies and obtained data on MT expression and Cd accumulation in long-lived mouse models. We confirmed a relationship between species maximum life span in captive mammals and their Cd content in liver and kidney. We found that although the number of MT genes does not affect longevity, gene expression and protein amount of specific MT paralogs are strongly related to life span in mammals. MT expression rather than gene number may influence the high Cd levels and longevity of some species. In support of this, we found that overexpression of MT-1 accelerated Cd accumulation in mice and that tissue Cd was higher in long-lived mouse strains with high MT expression. We conclude that long-lived species have evolved a more efficient stress response by upregulating the expression of MT genes in presence of Cd, which contributes to elevated tissue Cd levels.


Assuntos
Cádmio , Metalotioneína , Envelhecimento/genética , Animais , Cádmio/toxicidade , Rim , Fígado , Metalotioneína/genética , Camundongos
8.
Front Public Health ; 8: 172, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582603

RESUMO

Chronic pain prevalence is high worldwide and increases at older ages. Signs of premature aging have been associated with chronic pain, but few studies have investigated aging biomarkers in pain-related conditions. A set of DNA methylation (DNAm)-based estimates of age, called "epigenetic clocks," has been proposed as biological measures of age-related adverse processes, morbidity, and mortality. The aim of this study is to assess if different pain-related phenotypes show alterations in DNAm age. In our analysis, we considered three cohorts for which whole-blood DNAm data were available: heat pain sensitivity (HPS), including 20 monozygotic twin pairs discordant for heat pain temperature threshold; fibromyalgia (FM), including 24 cases and 20 controls; and headache, including 22 chronic migraine and medication overuse headache patients (MOH), 18 episodic migraineurs (EM), and 13 healthy subjects. We used the Horvath's epigenetic age calculator to obtain DNAm-based estimates of epigenetic age, telomere length, levels of 7 proteins in plasma, number of smoked packs of cigarettes per year, and blood cell counts. We did not find differences in epigenetic age acceleration, calculated using five different epigenetic clocks, between subjects discordant for pain-related phenotypes. Twins with high HPS had increased CD8+ T cell counts (nominal p = 0.028). HPS thresholds were negatively associated with estimated levels of GDF15 (nominal p = 0.008). FM patients showed decreased naive CD4+ T cell counts compared with controls (nominal p = 0.015). The severity of FM manifestations expressed through various evaluation tests was associated with decreased levels of leptin, shorter length of telomeres, and reduced CD8+ T and natural killer cell counts (nominal p < 0.05), while the duration of painful symptoms was positively associated with telomere length (nominal p = 0.034). No differences in DNAm-based estimates were detected for MOH or EM compared with controls. In summary, our study suggests that HPS, FM, and MOH/EM do not show signs of epigenetic age acceleration in whole blood, while HPS and FM are associated with DNAm-based estimates of immunological parameters, plasma proteins, and telomere length. Future studies should extend these observations in larger cohorts.


Assuntos
Epigênese Genética , Epigenômica , Idoso , Envelhecimento , Metilação de DNA/genética , Humanos , Pessoa de Meia-Idade , Dor
9.
Ageing Res Rev ; 62: 101073, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32446955

RESUMO

Lamin A, a main constituent of the nuclear lamina, is the major splicing product of the LMNA gene, which also encodes lamin C, lamin A delta 10 and lamin C2. Involvement of lamin A in the ageing process became clear after the discovery that a group of progeroid syndromes, currently referred to as progeroid laminopathies, are caused by mutations in LMNA gene. Progeroid laminopathies include Hutchinson-Gilford Progeria, Mandibuloacral Dysplasia, Atypical Progeria and atypical-Werner syndrome, disabling and life-threatening diseases with accelerated ageing, bone resorption, lipodystrophy, skin abnormalities and cardiovascular disorders. Defects in lamin A post-translational maturation occur in progeroid syndromes and accumulated prelamin A affects ageing-related processes, such as mTOR signaling, epigenetic modifications, stress response, inflammation, microRNA activation and mechanosignaling. In this review, we briefly describe the role of these pathways in physiological ageing and go in deep into lamin A-dependent mechanisms that accelerate the ageing process. Finally, we propose that lamin A acts as a sensor of cell intrinsic and environmental stress through transient prelamin A accumulation, which triggers stress response mechanisms. Exacerbation of lamin A sensor activity due to stably elevated prelamin A levels contributes to the onset of a permanent stress response condition, which triggers accelerated ageing.


Assuntos
Envelhecimento , Envelhecimento/genética , Humanos , Lamina Tipo A/genética , MicroRNAs , Mutação , Proteínas Nucleares , Progéria/genética , Precursores de Proteínas/genética
10.
Front Oncol ; 9: 860, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608222

RESUMO

A causal link between Human Papillomavirus (HPV) and breast cancer (BC) remains controversial. In spite of this, the observation that HPV DNA is over-represented in the Triple Negative (TN) BC has been reported. Here we remark the high prevalence of HPV DNA (44.4%) in aggressive BC subtypes (TN and HER2+) in a population of 273 Italian women and we convey the presence of HPV DNA in the epithelial and stromal compartments by in situ hybridization. As previously reported, we also found that serum derived-extracellular vesicles (EVs) from BC affected patients contain HPV DNA. Interestingly, in one TNBC patient, the same HPV DNA type was detected in the serum-derived EVs, cervical and BC tissue samples. Then, we report that HPV DNA can be transferred by EVs to recipient BC stromal cells that show an activated phenotype (e.g., CD44, IL6 expression) and an enhanced capability to sustain mammospheres (MS) formation. These data suggest that HPV DNA vehiculated by EVs is a potential trigger for BC niche aggressiveness.

11.
J Transl Med ; 17(1): 250, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383037

RESUMO

BACKGROUND: Here, we isolated, expanded and functionally characterized regulatory T cells (Tregs) from patients with end stage kidney and liver disease, waiting for kidney/liver transplantation (KT/LT), with the aim to establish a suitable method to obtain large numbers of immunomodulatory cells for adoptive immunotherapy post-transplantation. METHODS: We first established a preclinical protocol for expansion/isolation of Tregs from peripheral blood of LT/KT patients. We then scaled up and optimized such protocol according to good manufacturing practice (GMP) to obtain high numbers of purified Tregs which were phenotypically and functionally characterized in vitro and in vivo in a xenogeneic acute graft-versus-host disease (aGVHD) mouse model. Specifically, immunodepressed mice (NOD-SCID-gamma KO mice) received human effector T cells with or without GMP-produced Tregs to prevent the onset of xenogeneic GVHD. RESULTS: Our small scale Treg isolation/expansion protocol generated functional Tregs. Interestingly, cryopreservation/thawing did not impair phenotype/function and DNA methylation pattern of FOXP3 gene of the expanded Tregs. Fully functional Tregs were also isolated/expanded from KT and LT patients according to GMP. In the mouse model, GMP Tregs from LT or KT patient proved to be safe and show a trend toward reduced lethality of acute GVHD. CONCLUSIONS: These data demonstrate that expanded/thawed GMP-Tregs from patients with end-stage organ disease are fully functional in vitro. Moreover, their infusion is safe and results in a trend toward reduced lethality of acute GVHD in vivo, further supporting Tregs-based adoptive immunotherapy in solid organ transplantation.


Assuntos
Criopreservação/métodos , Falência Renal Crônica/imunologia , Hepatopatias/imunologia , Linfócitos T Reguladores/citologia , Adulto , Idoso , Animais , Transplante de Células , Metilação de DNA , Feminino , Fatores de Transcrição Forkhead/genética , Doença Enxerto-Hospedeiro , Humanos , Imunoterapia , Falência Renal Crônica/cirurgia , Hepatopatias/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Pessoa de Meia-Idade , Fenótipo
12.
Ageing Res Rev ; 54: 100918, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226498

RESUMO

The Barker hypothesis of 'foetal origin of adult diseases' has led to emphasize the concept of 'developmental programming', based on the crucial role of epigenetic factors. Accordingly, it has been demonstrated that parental adversity (before conception and during pregnancy) and foetal factors (i.e., hypoxia, malnutrition and placental insufficiency) permanently modify the physiological systems of the progeny, predisposing them to premature ageing and chronic disease during adulthood. Thus, an altered functionality of the endocrine, immune, nervous and cardiovascular systems is observed in the progeny. However, it remains to be understood whether the haematopoietic system itself also represents a portrait of foetal programming. Here, we provide evidence, reporting and discussing related theories, and results of studies described in the literature. In addition, we have outlined our opinions and suggest how it is possible to intervene to correct foetal mal-programming. Some pro-health interventions and recommendations are proposed, with the hope of guarantee the health of future generations and trying to combat the continuous increase in age-related diseases in human populations.


Assuntos
Desenvolvimento Fetal , Sistema Hematopoético/crescimento & desenvolvimento , Animais , Epigenômica , Feminino , Humanos , Gravidez
13.
Epigenomics ; 11(6): 587-604, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31066579

RESUMO

Aim: To investigate the genome-wide methylation of genetically characterized colorectal cancer stem cell (CR-CSC) lines. Materials & methods: Eight CR-CSC lines were isolated from primary colorectal cancer (CRC) tissues, cultured and characterized for aneuploidy, mutational status of CRC-related genes and microsatellite instability (MSI). Genome-wide DNA methylation was assessed by MethylationEPIC microarray. Results: We describe a distinctive methylation pattern that is maintained following in vivo passages in immune-compromised mice. We identified an epigenetic CR-CSC signature associated with MSI. We noticed that the preponderance of the differentially methylated positions do not reside at CpG islands, but spread to shelf and open sea regions. Conclusion: Given that CRCs with MSI-high status have a lower metastatic potential, the identification of a MSI-related methylation signature could provide new insights and possible targets into metastatic CRC.


Assuntos
Neoplasias do Colo/genética , Metilação de DNA , Instabilidade de Microssatélites , Células-Tronco Neoplásicas/patologia , Animais , Neoplasias do Colo/patologia , Ilhas de CpG/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Xenoenxertos , Humanos , Camundongos
14.
PLoS One ; 14(4): e0215490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31022207

RESUMO

Induced pluripotent stem cell (iPSC)-technology is an important platform in medicine and disease modeling. Physiological degeneration and disease onset are common occurrences in the aging population. iPSCs could offer regenerative medical options for age-related degeneration and disease in the elderly. However, reprogramming somatic cells from the elderly is inefficient when successful at all. Perhaps due to their low rates of replication in culture, traditional transduction and reprogramming approaches with centenarian fibroblasts met with little success. A simple and reproducible reprogramming process is reported here which enhances interactions of the cells with the viral vectors that leads to improved iPSC generation. The improved methods efficiently generates fully reprogrammed iPSC lines from 105-107 years old subjects in feeder-free conditions using an episomal, Sendai-Virus (SeV) reprogramming vector expressing four reprogramming factors. In conclusion, dermal fibroblasts from human subjects older than 100 years can be efficiently and reproducibly reprogrammed to fully pluripotent cells with minor modifications to the standard reprogramming procedures. Efficient generation of iPSCs from the elderly may provide a source of cells for the regeneration of tissues and organs with autologous cells as well as cellular models for the study of aging, longevity and age-related diseases.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular , Fibroblastos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Adulto , Fatores Etários , Idoso de 80 Anos ou mais , Células Cultivadas , Vetores Genéticos/genética , Humanos , Hidrodinâmica , Recém-Nascido , Cultura Primária de Células , Reprodutibilidade dos Testes , Vírus Sendai/genética , Pele/citologia , Envelhecimento da Pele/fisiologia , Transfecção/métodos , Transplante Autólogo/métodos
15.
Cell Death Differ ; 26(9): 1845-1858, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30622304

RESUMO

Current literature agrees on the notion that efficient DNA repair favors longevity across evolution. The DNA damage response machinery activates inflammation and type I interferon signaling. Both pathways play an acknowledged role in the pathogenesis of a variety of age-related diseases and are expected to be detrimental for human longevity. Here, we report on the anti-inflammatory molecular make-up of centenarian's fibroblasts (low levels of IL-6, type 1 interferon beta, and pro-inflammatory microRNAs), which is coupled with low level of DNA damage (measured by comet assay and histone-2AX activation) and preserved telomere length. In the same cells, high levels of the RNAseH2C enzyme subunit and low amounts of RNAseH2 substrates, i.e. cytoplasmic RNA:DNA hybrids are present. Moreover, RNAseH2C locus is hypo-methylated and RNAseH2C knock-down up-regulates IL-6 and type 1 interferon beta in centenarian's fibroblasts. Interestingly, RNAseH2C locus is hyper-methylated in vitro senescent cells and in tissues from atherosclerotic plaques and breast tumors. Finally, extracellular vesicles from centenarian's cells up-regulate RNAseH2C expression and dampen the pro-inflammatory phenotype of fibroblasts, myeloid, and cancer cells. These data suggest that centenarians are endowed with restrained DNA damage-induced inflammatory response, that may facilitate their escape from the deleterious effects of age-related chronic inflammation.


Assuntos
Senescência Celular/genética , Dano ao DNA/genética , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Longevidade/genética , Ribonuclease H/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/química , Neoplasias da Mama/genética , Dano ao DNA/efeitos dos fármacos , Vesículas Extracelulares/imunologia , Feminino , Fibroblastos/enzimologia , Loci Gênicos , Humanos , Inflamação/genética , Interferon beta/metabolismo , Interleucina-6/metabolismo , Longevidade/fisiologia , Masculino , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Placa Aterosclerótica/química , Placa Aterosclerótica/genética , Ribonuclease H/genética , Homeostase do Telômero/genética , Adulto Jovem
16.
J Gerontol A Biol Sci Med Sci ; 74(1): 1-8, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29554203

RESUMO

The feasibility of liver transplantation from old healthy donors suggests that this organ is able to preserve its functionality during aging. To explore the biological basis of this phenomenon, we characterized the epigenetic profile of liver biopsies collected from 45 healthy liver donors ranging from 13 to 90 years old using the Infinium HumanMethylation450 BeadChip. The analysis indicates that a large remodeling in DNA methylation patterns occurs, with 8,823 age-associated differentially methylated CpG probes. Notably, these age-associated changes tended to level off after the age of 60, as confirmed by Horvath's clock. Using stringent selection criteria, we further identified a DNA methylation signature of aging liver including 75 genomic regions. We demonstrated that this signature is specific for liver compared to other tissues and that it is able to detect biological age-acceleration effects associated with obesity. Finally, we combined DNA methylation measurements with available expression data. Although the intersection between the two omic characterizations was low, both approaches suggested a previously unappreciated role of epithelial-mesenchymal transition and Wnt-signaling pathways in the aging of human liver.


Assuntos
Envelhecimento/metabolismo , Epigênese Genética , Transplante de Fígado , Fígado/metabolismo , RNA/genética , Transcriptoma/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Metilação de DNA , Feminino , Humanos , Fígado/citologia , Masculino , Pessoa de Meia-Idade , Doadores de Tecidos , Adulto Jovem
17.
Front Med (Lausanne) ; 5: 61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662881

RESUMO

Geroscience, the new interdisciplinary field that aims to understand the relationship between aging and chronic age-related diseases (ARDs) and geriatric syndromes (GSs), is based on epidemiological evidence and experimental data that aging is the major risk factor for such pathologies and assumes that aging and ARDs/GSs share a common set of basic biological mechanisms. A consequence is that the primary target of medicine is to combat aging instead of any single ARD/GSs one by one, as favored by the fragmentation into hundreds of specialties and sub-specialties. If the same molecular and cellular mechanisms underpin both aging and ARDs/GSs, a major question emerges: which is the difference, if any, between aging and ARDs/GSs? The hypothesis that ARDs and GSs such as frailty can be conceptualized as accelerated aging will be discussed by analyzing in particular frailty, sarcopenia, chronic obstructive pulmonary disease, cancer, neurodegenerative diseases such as Alzheimer and Parkinson as well as Down syndrome as an example of progeroid syndrome. According to this integrated view, aging and ARDs/GSs become part of a continuum where precise boundaries do not exist and the two extremes are represented by centenarians, who largely avoided or postponed most ARDs/GSs and are characterized by decelerated aging, and patients who suffered one or more severe ARDs in their 60s, 70s, and 80s and show signs of accelerated aging, respectively. In between these two extremes, there is a continuum of intermediate trajectories representing a sort of gray area. Thus, clinically different, classical ARDs/GSs are, indeed, the result of peculiar combinations of alterations regarding the same, limited set of basic mechanisms shared with the aging process. Whether an individual will follow a trajectory of accelerated or decelerated aging will depend on his/her genetic background interacting lifelong with environmental and lifestyle factors. If ARDs and GSs are manifestations of accelerated aging, it is urgent to identify markers capable of distinguishing between biological and chronological age to identify subjects at higher risk of developing ARDs and GSs. To this aim, we propose the use of DNA methylation, N-glycans profiling, and gut microbiota composition to complement the available disease-specific markers.

18.
Mediators Inflamm ; 2018: 7109312, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681767

RESUMO

The production of reactive oxygen species (ROS) may promote immunosenescence if not counterbalanced by the antioxidant systems. Cell membranes, proteins, and nucleic acids become the target of ROS and progressively lose their structure and functions. This process could lead to an impairment of the immune response. However, little is known about the capability of the immune cells of elderly individuals to dynamically counteract the oxidative stress. Here, the response of the main lymphocyte subsets to the induced oxidative stress in semisupercentenarians (CENT), their offspring (OFF), elderly controls (CTRL), and young individuals (YO) was analyzed using flow cytometry. The results showed that the ratio of the ROS levels between the induced and noninduced (I/NI) oxidative stress conditions was higher in CTRL and OFF than in CENT and YO, in almost all T, B, and NK subsets. Moreover, the ratio of reduced glutathione levels between I/NI conditions was higher in OFF and CENT compared to the other groups in almost all the subsets. Finally, we observed significant correlations between the response to the induced oxidative stress and the degree of methylation in specific genes on the oxidative stress pathway. Globally, these data suggest that the capability to buffer dynamic changes in the oxidative environment could be a hallmark of longevity in humans.


Assuntos
Envelhecimento/fisiologia , Linfócitos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Antioxidantes/metabolismo , Células Cultivadas , Feminino , Citometria de Fluxo , Glutationa/metabolismo , Humanos , Linfócitos/imunologia , Masculino , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo/fisiologia
19.
Ageing Res Rev ; 42: 1-13, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29208544

RESUMO

Mandibuloacral dysplasia (MAD) is a rare genetic condition characterized by bone abnormalities including localized osteolysis and generalized osteoporosis, skin pigmentation, lipodystrophic signs and mildly accelerated ageing. The molecular defects associated with MAD are mutations in LMNA or ZMPSTE24 (FACE1) gene, causing type A or type B MAD, respectively. Downstream of LMNA or ZMPSTE24 mutations, the lamin A precursor, prelamin A, is accumulated in cells and affects chromatin dynamics and stress response. A new form of mandibuloacral dysplasia has been recently associated with mutations in POLD1 gene, encoding DNA polymerase delta, a major player in DNA replication. Of note, involvement of prelamin A in chromatin dynamics and recruitment of DNA repair factors has been also determined under physiological conditions, at the border between stress response and cellular senescence. Here, we review current knowledge on MAD clinical and pathogenetic aspects and highlight aspects typical of physiological ageing.


Assuntos
Acro-Osteólise/diagnóstico por imagem , Acro-Osteólise/metabolismo , Senilidade Prematura/diagnóstico por imagem , Senilidade Prematura/metabolismo , Envelhecimento/metabolismo , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/metabolismo , Mandíbula/anormalidades , Acro-Osteólise/genética , Envelhecimento/genética , Envelhecimento/patologia , Senilidade Prematura/genética , Animais , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia/genética , Mandíbula/diagnóstico por imagem , Mandíbula/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mutação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA