Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511463

RESUMO

The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Surfactantes Pulmonares , Surfactantes Pulmonares/metabolismo , Tensoativos/farmacologia , Nicotiana/metabolismo , Pulmão/metabolismo
2.
Cell Biol Toxicol ; 35(4): 345-360, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30648195

RESUMO

Cigarette smoke is a well-established exogenous risk factor containing toxic reactive molecules able to induce oxidative stress, which in turn contributes to smoking-related diseases, including cardiovascular, pulmonary, and oral cavity diseases. We investigated the effects of cigarette smoke extract on human bronchial epithelial cells. Cells were exposed to various concentrations (2.5-5-10-20%) of cigarette smoke extract for 1, 3, and 24 h. Carbonylation was assessed by 2,4-dinitrophenylhydrazine using both immunocytochemical and Western immunoblotting assays. Cigarette smoke induced increasing protein carbonylation in a concentration-dependent manner. The main carbonylated proteins were identified by means of two-dimensional electrophoresis coupled to MALDI-TOF mass spectrometry analysis and database search (redox proteomics). We demonstrated that exposure of bronchial cells to cigarette smoke extract induces carbonylation of a large number of proteins distributed throughout the cell. Proteins undergoing carbonylation are involved in primary metabolic processes, such as protein and lipid metabolism and metabolite and energy production as well as in fundamental cellular processes, such as cell cycle and chromosome segregation, thus confirming that reactive carbonyl species contained in cigarette smoke markedly alter cell homeostasis and functions.


Assuntos
Brônquios/metabolismo , Fumar Cigarros/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Oxirredução , Estresse Oxidativo , Fenil-Hidrazinas/análise , Carbonilação Proteica/efeitos dos fármacos , Proteômica , Fumaça , Fumar , Nicotiana
3.
Respir Res ; 19(1): 198, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290809

RESUMO

BACKGROUND: Although pharmacological treatment has increased the average life expectancy of patients with cystic fibrosis, the median survival of females is shorter than that of males. In vitro and in vivo studies have shown that estrogens play a relevant role in the disease progression. The aim of this study was to investigate the effects of 17ß-estradiol and tamoxifen citrate (TMX) on calcium-activated chloride channel (CaCC) currents in human bronchial epithelial cells carrying the ΔPhe508-CFTR mutation both in homozygosis and in heterozygosis. METHODS: Perforated patch clamp experiments were performed on single cells of the immortalized cell lines CFBE and IB3-1. Gramicidin (10 or 20 µM) was added to the electrode solution to reach the whole cell configuration. The electrical stimulation protocol consisted of square voltages ranging from - 80 to + 80 mV, in steps of 20 mV and with a duration of 800 msec. RESULTS: The presence of 17ß-estradiol significantly reduced the CaCC currents, both in basal conditions and in the presence of ATP (100 µM). The addition of TMX (10 µM) completely restored the currents abolished by 17ß-estradiol, in basal conditions and after stimulation with ATP in both CFBE and IB3-1 cells. TMX had a strong, direct action on membrane current density, which significantly increased more than 4-fold in both cases. The membrane current stimulation produced by TMX was further enhanced by the addition of ATP. CFBE cells incubated for 24 h with 3 µM VX-809 (a CFTR corrector) and then acutely stimulated with VX-770 (a CFTR potentiator) in the presence of forskolin, showed an increase of chloride currents which were abolished by Inh-172. The chloride current density induced by TMX + ATP was, on average, greater than that obtained with VX-809 + VX-770 + forskolin. The currents elicited by TMX + ATP were abolished by the addition of NPPB, a CaCC inhibitor. The combined administration of TMX/ATP and VXs/FSK had an additional effect on chloride currents. CONCLUSIONS: Our results show that TMX restores CaCC currents inhibited by 17ß-estradiol and directly activates the transmembrane chloride currents potentiated by ATP, an effect which is mutation independent. The combined effect of TMX with current used treatments for cystic fibrosis could be of benefit to patients.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Moduladores de Receptor Estrogênico/farmacologia , Mutação Puntual/genética , Mucosa Respiratória/efeitos dos fármacos , Tamoxifeno/farmacologia , Linhagem Celular Transformada , Canais de Cloreto/fisiologia , Estradiol/farmacologia , Humanos , Mucosa Respiratória/fisiologia
4.
Free Radic Biol Med ; 112: 360-375, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28807817

RESUMO

Glutathione (GSH) is the major non-protein thiol in humans and other mammals, which is present in millimolar concentrations within cells, but at much lower concentrations in the blood plasma. GSH and GSH-related enzymes act both to prevent oxidative damage and to detoxify electrophiles. Under oxidative stress, two GSH molecules become linked by a disulphide bridge to form glutathione disulphide (GSSG). Therefore, assessment of the GSH/GSSG ratio may provide an estimation of cellular redox metabolism. Current evidence resulting from studies in human blood, solid tissues, and cultured cells suggests that GSH also plays a prominent role in protein redox regulation via S -glutathionylation, i.e., the conjugation of GSH to reactive protein cysteine residues. A number of methodologies that enable quantitative analysis of GSH/GSSG ratio and S-glutathionylated proteins (PSSG), as well as identification and visualization of PSSG in tissue sections or cultured cells are currently available. Here, we have considered the main methodologies applied for GSH, GSSG and PSSG detection in biological samples. This review paper provides an up-to-date critical overview of the application of the most relevant analytical, morphological, and proteomics approaches to detect and analyse GSH, GSSG and PSSG in mammalian samples as well as discusses their current limitations.


Assuntos
Proteínas Sanguíneas/isolamento & purificação , Dissulfeto de Glutationa/metabolismo , Glutationa/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Alquilação , Animais , Biotinilação , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão , Cisteína/metabolismo , Eletroforese em Gel de Poliacrilamida , Corantes Fluorescentes/química , Glutationa/análise , Dissulfeto de Glutationa/análise , Humanos , Fígado/química , Fígado/metabolismo , Estresse Oxidativo , Proteômica/instrumentação , Espectrometria de Massas em Tandem
5.
Free Radic Biol Med ; 89: 443-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453922

RESUMO

The role of oxidative stress in patients with end stage renal disease (ESRD), which occurs at significantly higher levels than in the general population, is often underestimated in clinical practice. Emerging evidence highlights the strong correlation of oxidative stress with chronic inflammation and cardiovascular disease, which are highly prevalent in most patients on maintenance haemodialysis (HD) and are a major risk factor for mortality in this population. In this study, total plasma thiols and plasma S-thiolated proteins were measured in patients with ESRD, before and after a regular HD session, and compared to age-matched healthy subjects. We found a significant decrease in the level of total plasma thiols and, conversely, a significant increase in the level of S-thiolated proteins in these patients. In most patients, post-HD plasma level of total thiols did not differ from the one in healthy subjects, whereas plasma level of S-thiolated proteins was lower in HD patients than in age-matched healthy controls. This suggests that a single HD session restores plasma thiol redox status and re-establishes the antioxidant capacity of plasma thiols. Additionally, we determined protein thiolation index (PTI), i.e., the molar ratio between the sum of all low molecular mass thiols bound to S-thiolated plasma proteins and protein free cysteinyl residues. Patients with ESRD had a significantly higher PTI compared to age-matched healthy subjects and HD was associated with a decrease in PTI to normal, or lower than normal, levels. Although this study is limited in size, our results suggest that PTI is a useful indicator of thiol-specific oxidative stress in patients with ESRD on maintenance HD. This study also emphasizes that PTI determination is a cheap and simple tool suitable for large-scale clinical studies that could be used for routine screening of thiol-specific oxidative stress.


Assuntos
Proteínas Sanguíneas/metabolismo , Estresse Oxidativo/fisiologia , Diálise Renal , Compostos de Sulfidrila/metabolismo , Idoso , Biomarcadores/sangue , Feminino , Humanos , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Oxirredução , Espectrofotometria
6.
PLoS One ; 9(10): e108826, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295618

RESUMO

To optimise the efficiency of cell machinery, cells can use the same protein (often called a hub protein) to participate in different cell functions by simply changing its target molecules. There are large data sets describing protein-protein interactions ("interactome") but they frequently fail to consider the functional significance of the interactions themselves. We studied the interaction between two potential hub proteins, ICln and 4.1R (in the form of its two splicing variants 4.1R80 and 4.1R135), which are involved in such crucial cell functions as proliferation, RNA processing, cytoskeleton organisation and volume regulation. The sub-cellular localisation and role of native and chimeric 4.1R over-expressed proteins in human embryonic kidney (HEK) 293 cells were examined. ICln interacts with both 4.1R80 and 4.1R135 and its over-expression displaces 4.1R from the membrane regions, thus affecting 4.1R interaction with ß-actin. It was found that 4.1R80 and 4.1R135 are differently involved in regulating the swelling activated anion current (ICl,swell) upon hypotonic shock, a condition under which both isoforms are dislocated from the membrane region and thus contribute to ICl,swell current regulation. Both 4.1R isoforms are also differently involved in regulating cell morphology, and ICln counteracts their effects. The findings of this study confirm that 4.1R plays a role in cell volume regulation and cell morphology and indicate that ICln is a new negative regulator of 4.1R functions.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas ELAV/metabolismo , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Linhagem Celular , Citoesqueleto/metabolismo , Proteína Semelhante a ELAV 2 , Células HEK293 , Humanos , Ligação Proteica
7.
Cell Physiol Biochem ; 32(7): 129-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24429820

RESUMO

BACKGROUND: Cigarette smoke extract (CSE), a model for studying the effects of tobacco smoke in vivo and in vitro, induces cell oxidative stress and affects the antioxidative glutathione system. We evaluated the impact of CSE on airway epithelial cells and the possible cytoprotective effect of the mucolitic drug S-carboximethilcysteine lysine salt (S-CMC-Lys). METHODS: Reduced glutathione (GSH) and reactive oxygen species (ROS) intracellular levels were evaluated by fluorimetry in human bronchial epithelial cells (16-HBE) and the expression and activity of enzymes of the GSH metabolic pathway were investigated by RT-PCR, Western blot and colorimetric assays. RESULTS: CSE significantly increased cell mortality in a time and dose dependent manner, via an apoptosis-independent pathway. Short-term (3 hours) CSE exposure induced an increase in ROS levels and a GSH intracellular concentration drop. In parallel, the expression of glutathione peroxidases 2 and 3, glutathione reductase and glutamate-cysteine-ligase was increased. S-CMC-Lys was effective in counteracting these effects. CONCLUSION: CSE affects ROS levels, GSH concentration and GSH enzymes pathway. These effects can be to some extent reversed by S-CMC-Lys, that could represent a therapeutic tool to counteract CSE induced oxidative cellular injuries.


Assuntos
Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Glutationa/metabolismo , Fumar/efeitos adversos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Homeostase/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
8.
PLoS One ; 7(12): e52014, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284854

RESUMO

The CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) activity and localization are influenced by the cytoskeleton, in particular by actin and its polymerization state. In this study we investigated whether the expression of the hypertensive mutations of α-adducin (G460W-S586C in humans, F316Y in rats), an actin capping protein, led to a functional modification of CFTR activity and surface expression. The experiments were performed on HEK293 T cells cotransfected with CFTR and the human wild type (WT) or G460W mutated α-adducin. In whole-cell patch-clamp experiments, both the CFTR chloride current and the slope of current activation after forskolin addition were significantly higher in HEK cells overexpressing the G460W adducin. A higher plasma membrane density of active CFTR channels was confirmed by cell-attached patch-clamp experiments, both in HEK cells and in cultured primary DCT cells, isolated from MHS (Milan Hypertensive Strain, a Wistar rat (Rattus norvegicus) hypertensive model carrying the F316Y adducin mutation), compared to MNS (Milan Normotensive Strain) rats. Western blot experiments demonstrated an increase of the plasma membrane CFTR protein expression, with a modification of the channel glycosylation state, in the presence of the mutated adducin. A higher retention of CFTR protein in the plasma membrane was confirmed both by FRAP (Fluorescence Recovery After Photobleaching) and photoactivation experiments. The present data indicate that in HEK cells and in isolated DCT cells the presence of the G460W-S586C hypertensive variant of adducin increases CFTR channel activity, possibly by altering its membrane turnover and inducing a retention of the channel in the plasmamembrane. Since CFTR is known to modulate the activity of many others transport systems, the increased surface expression of the channel could have consequences on the whole network of transport in kidney cells.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Túbulos Renais Distais/metabolismo , Mutação , Animais , Membrana Celular/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Expressão Gênica , Células HEK293 , Humanos , Masculino , Técnicas de Patch-Clamp , Ligação Proteica , Ratos , Transdução de Sinais
9.
Cell Physiol Biochem ; 22(5-6): 455-64, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19088427

RESUMO

The mucoactive drug S-carbocysteine lysine salt monohydrate (S-CMC-Lys) stimulates glutathione (GSH) efflux from respiratory cells. Since GSH is one of the most important redox regulatory mechanisms, the aim of this study was to evaluate the S-CMC-Lys effects on GSH efflux and intracellular concentration during an oxidative stress induced by the hydroxyl radical (xOH). Experiments were performed on cultured human respiratory WI-26VA4 cells by means of patch-clamp experiments in whole-cell configuration and of fluorimetric analyses at confocal microscope. xOH exposure induced an irreversible inhibition of the GSH and chloride currents that was prevented if the cells were incubated with S-CMC-Lys. In this instance, the currents were inhibited by the specific blocker CFTR(inh)-172. CFT1-C2 cells, which lack a functional CFTR channel, were not responsive to S-CMC-Lys, but the stimulatory effect of the drug was restored in LCFSN-infected CFT1 cells, functionally corrected to express CFTR. Fluorimetric measurements performed on the S-CMC-Lys-incubated cells revealed a significant increase of the GSH concentration that was completely hindered after oxidative stress and abolished by CFTR(inh)-172. The cellular content of reactive oxygen species was significantly lower in the S-CMC-Lys-treated cells either before or after xOH exposure. As a conclusion, S-CMC-Lys could exert a protective function during oxidative stress, therefore preventing or reducing the ROS-mediated inflammatory response.


Assuntos
Carbocisteína/análogos & derivados , Citoproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Sistema Respiratório/citologia , Carbocisteína/farmacologia , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fluorometria , Glutationa/metabolismo , Humanos , Radical Hidroxila/metabolismo , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos
10.
Biochem Biophys Res Commun ; 290(5): 1564-72, 2002 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-11820801

RESUMO

In guinea pig gallbladder epithelial cells, an increase in intracellular cAMP levels elicits the rise of anion channel activity. We investigated by patch-clamp techniques whether K(+) channels were also activated. In a cell-attached configuration and in the presence of theophylline and forskolin or 8-Br-cAMP in the cellular incubation bath, an increase of the open probability (P(o)) values for Ca(2+)-activated K(+) channels with a single-channel conductance of about 160 pS, for inward current, was observed. The increase in P(o) of these channels was also seen in an inside-out configuration and in the presence of PKA, ATP, and cAMP, but not with cAMP alone; phosphorylation did not influence single-channel conductance. In the inside-out configuration, the opioid loperamide (10(-5) M) was able to reduce P(o) when it was present either in the microelectrode filling solution or on the cytoplasmic side. Detection in the epithelial cells by RT-PCR of the mRNA corresponding to the alpha subunit of large-conductance Ca(2+)-activated K(+) channels (BK(Ca)) indicates that this gallbladder channel could belong to the BK family. Immunohistochemistry experiments confirm that these cells express the BK alpha subunit, which is located on the apical membrane. Other K(+) channels with lower conductance (40 pS) were not activated either by 8-Br-cAMP (cell-attached) or by PKA + ATP + cAMP (inside-out). These channels were insensitive to TEA(+) and loperamide. The data demonstrate that under conditions that induce secretion, phosphorylation activates anion channels as well as Ca(2+)-dependent, loperamide-sensitive K(+) channels present on the apical membrane.


Assuntos
AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , Vesícula Biliar/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Separação Celular , Células Cultivadas , Eletrofisiologia/métodos , Cobaias , Imuno-Histoquímica , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Canais de Potássio Ativados por Cálcio de Condutância Alta , Masculino , Camundongos , Dados de Sequência Molecular , Técnicas de Patch-Clamp/métodos , Canais de Potássio Cálcio-Ativados/biossíntese , Canais de Potássio Cálcio-Ativados/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA