Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circulation ; 148(2): 144-158, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37125593

RESUMO

BACKGROUND: Inhibition of PCSK9 (proprotein convertase subtilisin/kexin type 9)-low density lipoprotein receptor interaction with injectable monoclonal antibodies or small interfering RNA lowers plasma low density lipoprotein-cholesterol, but despite nearly 2 decades of effort, an oral inhibitor of PCSK9 is not available. Macrocyclic peptides represent a novel approach to target proteins traditionally considered intractable to small-molecule drug design. METHODS: Novel mRNA display screening technology was used to identify lead chemical matter, which was then optimized by applying structure-based drug design enabled by novel synthetic chemistry to identify macrocyclic peptide (MK-0616) with exquisite potency and selectivity for PCSK9. Following completion of nonclinical safety studies, MK-0616 was administered to healthy adult participants in a single rising-dose Phase 1 clinical trial designed to evaluate its safety, pharmacokinetics, and pharmacodynamics. In a multiple-dose trial in participants taking statins, MK-0616 was administered once daily for 14 days to characterize the safety, pharmacokinetics, and pharmacodynamics (change in low density lipoprotein cholesterol). RESULTS: MK-0616 displayed high affinity (Ki = 5pM) for PCSK9 in vitro and sufficient safety and oral bioavailability preclinically to enable advancement into the clinic. In Phase 1 clinical studies in healthy adults, single oral doses of MK-0616 were associated with >93% geometric mean reduction (95% CI, 84-103) of free, unbound plasma PCSK9; in participants on statin therapy, multiple-oral-dose regimens provided a maximum 61% geometric mean reduction (95% CI, 43-85) in low density lipoprotein cholesterol from baseline after 14 days of once-daily dosing of 20 mg MK-0616. CONCLUSIONS: This work validates the use of mRNA display technology for identification of novel oral therapeutic agents, exemplified by the identification of an oral PCSK9 inhibitor, which has the potential to be a highly effective cholesterol lowering therapy for patients in need.


Assuntos
Anticolesterolemiantes , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipercolesterolemia , Adulto , Humanos , Anticolesterolemiantes/efeitos adversos , Colesterol , LDL-Colesterol , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Peptídeos/uso terapêutico , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
2.
J Org Chem ; 85(3): 1466-1475, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31660743

RESUMO

The Myc transcription factor represents an "undruggable" target of high biological interest due to its central role in various cancers. An abbreviated form of the c-Myc protein, called Omomyc, consists of the Myc DNA-binding domain and a coiled-coil region to facilitate dimerization of the 90 amino acid polypeptide. Here we present our results to evaluate the synthesis of Omomyc using three complementary strategies: linear Fmoc solid-phase peptide synthesis (SPPS) using several advancements for difficult sequences, native chemical ligation from smaller peptide fragments, and a high-throughput bacterial expression and assay platform for rapid mutagenesis. This multifaceted approach allowed access to up to gram quantities of the mini-protein and permitted in vitro and in vivo SAR exploration of this modality. DNA-binding results and cellular activity confirm that Omomyc and analogues presented here, are potent binders of the E-box DNA engaged by Myc for transcriptional activation and that this 90-amino acid mini-protein is cell permeable and can inhibit proliferation of Myc-dependent cell lines. We also present additional results on covalent homodimerization through disulfide formation of the full-length mini-protein and show the coiled-coil region can be truncated while preserving both DNA binding and cellular activity. Altogether, our results highlight the ability of advanced peptide synthesis to achieve SAR tractability in a challenging synthetic modality.


Assuntos
DNA , Proteínas Proto-Oncogênicas c-myc , Linhagem Celular , DNA/metabolismo , Fragmentos de Peptídeos , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
3.
Bioconjug Chem ; 27(9): 2081-8, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27469406

RESUMO

In an effort to examine the utility of antibody-drug conjugates (ADCs) beyond oncology indications, a novel phosphate bridged Cathepsin B sensitive linker was developed to enable the targeted delivery of glucocorticoids. Phosphate bridging of the Cathepsin B sensitive linkers allows for payload attachment at an aliphatic alcohol. As small molecule drug-linkers, these aqueous soluble phosphate containing drug-linkers were found to have robust plasma stability coupled with rapid release of payload in a lysosomal environment. Site-specific ADCs were successfully made between these drug-linkers and an antibody against human CD70, a receptor specifically expressed in immune cells but also found aberrantly expressed in multiple human carcinomas. These ADCs demonstrated in vitro targeted delivery of glucocorticoids to a representative cell line as measured by changes in glucocorticoid receptor (GR) mediated gene mRNA levels. This novel linker expands the scope of potential ADC payloads by allowing an aliphatic alcohol to be a stable, yet cleavable attachment site. This phosphate linker may have broad utility for internalizing ADCs as well as other targeted delivery platforms.


Assuntos
Catepsina B/metabolismo , Imunoconjugados/química , Imunoconjugados/metabolismo , Fosfatos/química , Água/química , Álcoois/química , Carbonatos/química , Estabilidade de Medicamentos , Humanos , Lisossomos/metabolismo , Solubilidade
4.
Cell Chem Biol ; 23(1): 10-17, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26933732

RESUMO

Chemical probes represent an important component of both academic and pharmaceutical drug discovery research. As a complement to prior reviews that have defined this scientific field, we aim to provide an industry perspective on the value of having high-quality chemical probes throughout the course of preclinical research. By studying examples from the internal Merck pipeline, we recognize that these probes require significant collaborative investment to realize their potential impact in clarifying the tractability and translation of a given therapeutic target. This perspective concludes with recommendations for chemical probe discovery aimed toward maximizing their potential to identify targets that result in the successful delivery of novel therapeutics.


Assuntos
Descoberta de Drogas/métodos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Terapia de Alvo Molecular , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/agonistas , Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo
5.
J Am Chem Soc ; 138(4): 1430-45, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26745435

RESUMO

As part of an effort to examine the utility of antibody-drug conjugates (ADCs) beyond oncology indications, a novel pyrophosphate ester linker was discovered to enable the targeted delivery of glucocorticoids. As small molecules, these highly soluble phosphate ester drug linkers were found to have ideal orthogonal properties: robust plasma stability coupled with rapid release of payload in a lysosomal environment. Building upon these findings, site-specific ADCs were made between this drug linker combination and an antibody against human CD70, a receptor specifically expressed in immune cells but also found aberrantly expressed in multiple human carcinomas. Full characterization of these ADCs enabled procession to in vitro proof of concept, wherein ADCs 1-22 and 1-37 were demonstrated to afford potent, targeted delivery of glucocorticoids to a representative cell line, as measured by changes in glucocorticoid receptor-mediated gene mRNA levels. These activities were found to be antibody-, linker-, and payload-dependent. Preliminary mechanistic studies support the notion that lysosomal trafficking and enzymatic linker cleavage are required for activity and that the utility for the pyrophosphate linker may be general for internalizing ADCs as well as other targeted delivery platforms.


Assuntos
Difosfatos/química , Glucocorticoides/química , Imunoconjugados/química , Ésteres
6.
Bioorg Med Chem Lett ; 24(12): 2737-40, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24813734

RESUMO

Elevated plasma homocysteine (Hcy) levels are an independent risk factor for the onset and progression of Alzheimer's disease. Reduction of Hcy to normal levels therefore presents a new approach for disease modification. Hcy is produced by the cytosolic enzyme S-adenosylhomocysteine hydrolase (AHCY), which converts S-adenosylhomocysteine (SAH) to Hcy and adenosine. Herein we describe the design and characterization of novel, substrate-based S-adenosylhomocysteine hydrolase inhibitors with low nanomolar potency in vitro and robust activity in vivo.


Assuntos
Adenosina/análogos & derivados , Desenho de Fármacos , Hidrolases/antagonistas & inibidores , S-Adenosil-Homocisteína , Adenosina/química , Adenosina/farmacologia , Animais , Química Encefálica , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Homocisteína/sangue , Ligação de Hidrogênio , Concentração Inibidora 50 , Modelos Moleculares , Ratos , S-Adenosil-Homocisteína/química , Especificidade por Substrato
7.
Int J Pharm ; 466(1-2): 58-67, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24607208

RESUMO

A series of amphiphilic, biodegradable polypeptide copolymers were prepared for the delivery of siRNA (short interfering ribonucleic acid). The molecular weight (or polymer chain length) of the linear polymer was controlled by reaction stoichiometry for the 11.5, 17.2, and 24.6 kDa polypeptides, and the highest molecular weight polypeptide was prepared using a sequential addition method to obtain a polypeptide having a molecular weight of 38.6 kDa. These polymers were used to prepare polymer conjugate systems designed to target and deliver an apolipoprotein B (ApoB) siRNA to hepatocyte cells and to help delineate the effect of polymer molecular weight or polymer chain length on siRNA delivery in vivo. A clear trend in increasing potency was found with increasing molecular weight of the polymers examined (at a constant polymer:siRNA (w/w) ratio), with minimal toxicity found. Furthermore, the biodegradability of these polymer conjugates was examined and demonstrates the potential of these systems as siRNA delivery vectors.


Assuntos
Apolipoproteínas B/genética , Ornitina/química , Peptídeos/administração & dosagem , Fenilalanina/química , Polímeros/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Feminino , Fígado/metabolismo , Peso Molecular , Peptídeos/química , Polímeros/química , RNA Mensageiro/genética , RNA Interferente Pequeno/química , Ratos Sprague-Dawley
8.
J Control Release ; 183: 124-37, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24657948

RESUMO

The greatest challenge standing in the way of effective in vivo siRNA delivery is creating a delivery vehicle that mediates a high degree of efficacy with a broad therapeutic window. Key structure-activity relationships of a poly(amide) polymer conjugate siRNA delivery platform were explored to discover the optimized polymer parameters that yield the highest activity of mRNA knockdown in the liver. At the same time, the poly(amide) backbone of the polymers allowed for the metabolism and clearance of the polymer from the body very quickly, which was established using radiolabeled polymers to demonstrate the time course of biodistribution and excretion from the body. The fast degradation and clearance of the polymers provided for very low toxicity at efficacious doses, and the therapeutic window of this poly(amide)-based siRNA delivery platform was shown to be much broader than a comparable polymer platform. The results of this work illustrate that the poly(amide) platform has a promising future in the development of a siRNA-based drug approved for human use.


Assuntos
Materiais Biocompatíveis/síntese química , Portadores de Fármacos/síntese química , Fígado/metabolismo , Nylons/síntese química , Peptídeos/síntese química , RNA Interferente Pequeno/administração & dosagem , Animais , Autorradiografia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacocinética , Materiais Biocompatíveis/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/toxicidade , Desenho de Fármacos , Estabilidade de Medicamentos , Feminino , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Fígado/diagnóstico por imagem , Macaca mulatta , Nylons/química , Nylons/farmacocinética , Nylons/toxicidade , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/toxicidade , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética , RNA Interferente Pequeno/toxicidade , Cintilografia , Ratos Sprague-Dawley , Especificidade da Espécie , Relação Estrutura-Atividade , Distribuição Tecidual
9.
Bioconjug Chem ; 24(4): 640-7, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23496378

RESUMO

Efficient siRNA delivery is dependent not only on the ability of the delivery vehicle to target a specific organ but also on its ability to enable siRNA entry into the cytoplasm of the target cells. Polymers with endosomolytic properties are increasingly being used as siRNA delivery vehicles due to their potential to facilitate endosomal escape and intracellular delivery. Addition of disulfide bonds in the backbone of these polymers was expected to provide degradability through reduction by glutathione in cytosol. This paper describes the synthesis of new endosomolytic bioreducible poly(amido amine disulfide) polymers whose lytic potential can be masked at physiological pH, but can be restored at acidic endosomal pH. These polymer conjugates gave good in vitro knockdown (KD) and did not demonstrate cytotoxicity in a MTS assay. Efficient mRNA KD for apolipoprotein B in mouse liver was observed with these polyconjugates following intravenous dosing.


Assuntos
Dissulfetos/química , Sistemas de Liberação de Medicamentos , Endossomos/metabolismo , Poliaminas/química , RNA Interferente Pequeno/administração & dosagem , Animais , Apolipoproteínas B/deficiência , Apolipoproteínas B/genética , Eritrócitos/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Estrutura Molecular , Oxirredução , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia
10.
Anticancer Agents Med Chem ; 10(9): 697-712, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21235439

RESUMO

Current cancer chemotherapy relies heavily on cytotoxic agents, such as the taxanes and Vinca alkaloids, that interfere with the cellular machinery required for cell division and divert the cell down a pathway of programmed cell death. These antimitotic agents, or spindle poisons, target the mitotic spindle by binding to tubulin, a protein required not only for mitosis but also for structural integrity and proper function of healthy, terminally differentiated cells. To avoid side effects attributed to this nonselective mechanism of action, new targets in the mitotic pathway that act only in dividing cells were sought and a leading candidate to emerge from these efforts was kinesin spindle protein (KSP or HsEg5). KSP is a molecular motor protein that is expressed only during mitosis and controls the formation of a functional mitotic spindle. Inhibition of KSP causes mitotic arrest followed by cell death in malignant cells and thus has the potential to become a novel chemotherapeutic strategy with the potential for reduced toxicity. This article summarizes efforts carried out at Merck to discover potent, selective and water soluble KSP inhibitors that culminated in the discovery of MK-0731, the second KSP inhibitor to enter clinical trials. Of special focus in this article is how an HTS lead was optimized in apparently divergent directions, but these disparate leads converged in the design of compounds that overcame P-glycoprotein efflux and hERG channel activity, two issues that required considerable optimization within our program.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Cinesinas/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Piperidinas/química , Piperidinas/farmacologia , Pirróis/química , Pirróis/farmacologia , Taxoides/farmacologia , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Humanos , Cinesinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Piperidinas/síntese química , Pirróis/síntese química , Taxoides/uso terapêutico
11.
J Med Chem ; 51(14): 4239-52, 2008 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-18578472

RESUMO

Inhibition of kinesin spindle protein (KSP) is a novel mechanism for treatment of cancer with the potential to overcome limitations associated with currently employed cytotoxic agents. Herein, we describe a C2-hydroxymethyl dihydropyrrole KSP inhibitor ( 11) that circumvents hERG channel binding and poor in vivo potency, issues that limited earlier compounds from our program. However, introduction of the C2-hydroxymethyl group caused 11 to be a substrate for cellular efflux by P-glycoprotein (Pgp). Utilizing knowledge garnered from previous KSP inhibitors, we found that beta-fluorination modulated the p K a of the piperidine nitrogen and reduced Pgp efflux, but the resulting compound ( 14) generated a toxic metabolite in vivo. Incorporation of fluorine in a strategic, metabolically benign position by synthesis of an N-methyl-3-fluoro-4-(aminomethyl)piperidine urea led to compound 30 that has an optimal in vitro and metabolic profile. Compound 30 (MK-0731) was recently studied in a phase I clinical trial in patients with taxane-refractory solid tumors.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Cinesinas/antagonistas & inibidores , Neoplasias/enzimologia , Piperidinas/farmacologia , Pirróis/farmacologia , Taxoides/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Taxoides/uso terapêutico
12.
Bioorg Med Chem Lett ; 17(19): 5390-5, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17761419

RESUMO

3,5-diaryl-4,5-dihydropyrazoles were discovered to be potent KSP inhibitors with excellent in vivo potency. These enzyme inhibitors possess desirable physical properties that can be readily modified by incorporation of a weakly basic amine. Careful adjustment of amine basicity was essential for preserving cellular potency in a multidrug resistant cell line while maintaining good aqueous solubility.


Assuntos
Amidas/síntese química , Amidas/farmacologia , Antimitóticos/síntese química , Antimitóticos/farmacologia , Cinesinas/antagonistas & inibidores , Mitose/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fenômenos Químicos , Físico-Química , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Genes MDR/efeitos dos fármacos , Humanos , Indicadores e Reagentes , Solubilidade , Estereoisomerismo , Relação Estrutura-Atividade
13.
Bioorg Med Chem Lett ; 17(20): 5671-6, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17804233

RESUMO

Observations from two structurally related series of KSP inhibitors led to the proposal and discovery of dihydropyrazolobenzoxazines that possess ideal properties for cancer drug development. The synthesis and characterization of this class of inhibitors along with relevant pharmacokinetic and in vivo data are presented. The synthesis is highlighted by a key [3+2] cycloaddition to form the pyrazolobenzoxazine core followed by diastereospecific installation of a quaternary center.


Assuntos
Benzoxazinas/química , Benzoxazinas/farmacologia , Desenho de Fármacos , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Mitose/efeitos dos fármacos , Pirazóis/química , Animais , Benzoxazinas/síntese química , Benzoxazinas/farmacocinética , Linhagem Celular , Cães , Humanos , Hidrogênio/química , Estrutura Molecular , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 17(22): 6280-5, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17900896

RESUMO

From HTS lead 1, a novel benzoisoquinolinone class of ATP-competitive Chk1 inhibitors was devised and synthesized via a photochemical route. Using X-ray crystallography as a guide, potency was rapidly enhanced through the installation of a tethered basic amine designed to interact with an acidic residue (Glu91) in the enzyme pocket. Further SAR was explored at the solvent front and near to the H1 pocket and resulted in the discovery of low MW, sub-nanomolar inhibitors of Chk1.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Proteínas Quinases/efeitos dos fármacos , Quinolonas/síntese química , Quinolonas/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Estrutura Molecular , Fotoquímica , Proteínas Quinases/química , Quinolonas/química , Relação Estrutura-Atividade
15.
Bioorg Med Chem Lett ; 17(10): 2697-702, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17395460

RESUMO

Installation of a C2-aminopropyl side chain to the 2,4-diaryl-2,5-dihydropyrrole series of kinesin spindle protein (KSP) inhibitors results in potent, water soluble compounds, but the aminopropyl group induces susceptibility to cellular efflux by P-glycoprotein (Pgp). We show that by carefully modulating the basicity of the amino group by beta-fluorination, this series of inhibitors maintains potency against KSP and has greatly improved efficacy in a Pgp-overexpressing cell line. The discovery that cellular efflux by Pgp can be overcome by carefully modulating the basicity of an amine may be of general use to medicinal chemists attempting to transform leading compounds into cancer cell- or CNS-penetrant drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Flúor/metabolismo , Cinesinas/antagonistas & inibidores , Propilaminas/farmacologia , Pirróis/farmacologia , Transporte Biológico , Citoesqueleto , Concentração de Íons de Hidrogênio , Cinesinas/metabolismo , Solubilidade , Água
16.
Bioorg Med Chem Lett ; 16(22): 5907-12, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16990002

RESUMO

Through a comparison of X-ray co-crystallographic data for 1 and 2 in the Chek1 active site, it was hypothesized that the affinity of the indolylquinolinone series (2) for Chek1 kinase would be improved via C6 substitution into the hydrophobic region I (HI) pocket. An efficient route to 6-bromo-3-indolyl-quinolinone (9) was developed, and this series was rapidly optimized for potency by modification at C6. A general trend was observed among these low nanomolar Chek1 inhibitors that compounds with multiple basic amines, or elevated polar surface area (PSA) exhibited poor cell potency. Minimization of these parameters (basic amines, PSA) resulted in Chek1 inhibitors with improved cell potency, and preliminary pharmacokinetic data are presented for several of these compounds.


Assuntos
Inibidores Enzimáticos/farmacologia , Indóis/química , Proteínas Quinases/efeitos dos fármacos , Quinolonas/química , Animais , Sítios de Ligação , Quinase 1 do Ponto de Checagem , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Quinases/metabolismo , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 16(7): 1780-3, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16439122

RESUMO

2,4-Diaryl-2,5-dihydropyrroles have been discovered to be novel, potent and water-soluble inhibitors of KSP, an emerging therapeutic target for the treatment of cancer. A potential concern for these basic KSP inhibitors (1 and 2) was hERG binding that can be minimized by incorporation of a potency-enhancing C2 phenol combined with neutral N1 side chains. Aqueous solubility was restored to these, and other, non-basic inhibitors, through a phosphate prodrug strategy.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Cinesinas/antagonistas & inibidores , Pró-Fármacos , Pirróis/síntese química , Pirróis/farmacologia , Animais , Área Sob a Curva , Cães , Ligação Proteica , Pirróis/metabolismo , Pirróis/farmacocinética , Ratos , Solubilidade , Fuso Acromático/química , Água
18.
Bioorg Med Chem Lett ; 16(7): 1775-9, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16439123

RESUMO

The evolution of 2,4-diaryl-2,5-dihydropyrroles as inhibitors of KSP is described. Introduction of basic amide and urea moieties to the dihydropyrrole nucleus enhanced potency and aqueous solubility, simultaneously, and provided compounds that caused mitotic arrest of A2780 human ovarian carcinoma cells with EC(50)s<10nM. Ancillary hERG activity was evaluated for this series of inhibitors.


Assuntos
Cinesinas/antagonistas & inibidores , Pirróis/química , Pirróis/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Modelos Moleculares , Neoplasias Ovarianas/patologia , Pirróis/síntese química , Fuso Acromático/química
20.
J Org Chem ; 64(22): 8350-8362, 1999 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-11674758

RESUMO

A new class of DNA alkylating agents is described that incorporate the quinone of the mitomycins, which is thought to impart tumor cell selectivity as a result of preferential reduction and activation in hypoxic tumors, into the AT-selective binding framework of the duocarmycins capable of mitomycin-like reductive activation and duocarmycin-like spirocyclization and subsequent DNA alkylation. Consistent with this design, the quinone prodrugs fail to alkylate DNA unless reductively activated and then do so with an adenine N3 alkylation sequence selectivity identical to that of the duocarmycins. Additionally, the agents exhibit a selectivity toward DT-Diaphorase (NQO1)-containing versus DT-Diaphorase-deficient (resistant) tumor cell lines, and they were shown to be effective substrates for reduction by recombinant human DT-Diaphorase. As such, the agents constitute effective duocarmycin and CC-1065 analogues subject to reductive activation. In addition, the solvolysis pH rate dependence of a series of reactive spirocyclopropanes revealed a unique and inverted order of reactivity at pH 7 versus pH 3. This behavior and the structural features responsible for it are consistent with an acid-catalyzed reaction at pH 3, but a direct uncatalyzed S(N)2 reaction at pH 7 that is not subject to acid catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA