Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38661718

RESUMO

Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.


Assuntos
Comunicação Celular , Quimiocina CCL3 , Modelos Animais , Biossíntese de Proteínas , Transcrição Gênica , Animais , Camundongos , Comunicação Celular/imunologia , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Técnicas de Introdução de Genes , Camundongos Transgênicos , Muromegalovirus , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/imunologia , Transcrição Gênica/imunologia , Células Matadoras Naturais/imunologia , Interferon beta/farmacologia , Infecções por Herpesviridae/imunologia
2.
Front Immunol ; 15: 1338499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348028

RESUMO

Introduction: Prophylactic vaccines generate strong and durable immunity to avoid future infections, whereas post-exposure vaccinations are intended to establish rapid protection against already ongoing infections. Antiviral cytotoxic CD8+ T cells (CTL) are activated by dendritic cells (DCs), which themselves must be activated by adjuvants to express costimulatory molecules and so-called signal 0-chemokines that attract naive CTL to the DCs. Hypothesis: Here we asked whether a vaccination protocol that combines two adjuvants, a toll-like receptor ligand (TLR) and a natural killer T cell activator, to induce two signal 0 chemokines, synergistically accelerates CTL activation. Methods: We used a well-characterized vaccination model based on the model antigen ovalbumin, the TLR9 ligand CpG and the NKT cell ligand α-galactosylceramide to induce signal 0-chemokines. Exploiting this vaccination model, we studied detailed T cell kinetics and T cell profiling in different in vivo mouse models of viral infection. Results: We found that CTL induced by both adjuvants obtained a head-start that allowed them to functionally differentiate further and generate higher numbers of protective CTL 1-2 days earlier. Such signal 0-optimized post-exposure vaccination hastened clearance of experimental adenovirus and cytomegalovirus infections. Conclusion: Our findings show that signal 0 chemokine-inducing adjuvant combinations gain time in the race against rapidly replicating microbes, which may be especially useful in post-exposure vaccination settings during viral epi/pandemics.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Camundongos , Animais , Ligantes , Quimiocinas , Adjuvantes Imunológicos/farmacologia , Vacinação/métodos
3.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L373-L384, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36719079

RESUMO

Legionella pneumophila is the main etiological agent of Legionnaires' disease, a severe bacterial pneumonia. L. pneumophila is initially engulfed by alveolar macrophages (AMs) and subvert normal cellular functions to establish a replicative vacuole. Cigarette smokers are particularly susceptible to developing Legionnaires' disease and other pulmonary infections; however, little is known about the cellular mechanisms underlying this susceptibility. To investigate this, we used a mouse model of acute cigarette smoke exposure to examine the immune response to cigarette smoke and subsequent L. pneumophila infection. Contrary to previous reports, we show that cigarette smoke exposure alone causes a significant depletion of AMs using enzymatic digestion to extract cells, or via imaging intact lung lobes by light-sheet microscopy. Furthermore, treatment of mice deficient in specific types of cell death with smoke suggests that NLRP3-driven pyroptosis is a contributor to smoke-induced death of AMs. After infection, smoke-exposed mice displayed increased pulmonary L. pneumophila loads and developed more severe disease compared with air-exposed controls. We tested if depletion of AMs was related to this phenotype by directly depleting them with clodronate liposomes and found that this also resulted in increased L. pneumophila loads. In summary, our results showed that cigarette smoke depleted AMs from the lung and that this likely contributed to more severe Legionnaires' disease. Furthermore, the role of AMs in L. pneumophila infection is more nuanced than simply providing a replicative niche, and our studies suggest they play a major role in bacterial clearance.


Assuntos
Fumar Cigarros , Legionella pneumophila , Doença dos Legionários , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Pulmão/microbiologia
4.
J Exp Med ; 219(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35997679

RESUMO

Autoimmune vasculitis is a group of life-threatening diseases, whose underlying pathogenic mechanisms are incompletely understood, hampering development of targeted therapies. Here, we demonstrate that patients suffering from anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) showed increased levels of cGAMP and enhanced IFN-I signature. To identify disease mechanisms and potential therapeutic targets, we developed a mouse model for pulmonary AAV that mimics severe disease in patients. Immunogenic DNA accumulated during disease onset, triggering cGAS/STING/IRF3-dependent IFN-I release that promoted endothelial damage, pulmonary hemorrhages, and lung dysfunction. Macrophage subsets played dichotomic roles in disease. While recruited monocyte-derived macrophages were major disease drivers by producing most IFN-ß, resident alveolar macrophages contributed to tissue homeostasis by clearing red blood cells and limiting infiltration of IFN-ß-producing macrophages. Moreover, pharmacological inhibition of STING, IFNAR-I, or its downstream JAK/STAT signaling reduced disease severity and accelerated recovery. Our study unveils the importance of STING/IFN-I axis in promoting pulmonary AAV progression and identifies cellular and molecular targets to ameliorate disease outcomes.


Assuntos
Interferon Tipo I , Ácidos Nucleicos , Vasculite , Animais , Pulmão , Macrófagos , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases
5.
Nature ; 609(7928): 801-807, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901960

RESUMO

Anorexia and fasting are host adaptations to acute infection, and induce a metabolic switch towards ketogenesis and the production of ketone bodies, including ß-hydroxybutyrate (BHB)1-6. However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains unclear. Here we show that the production of BHB is impaired in individuals with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) but not in those with  influenza-induced ARDS. We found that BHB promotes both the survival of and the production of interferon-γ by CD4+ T cells. Applying a metabolic-tracing analysis, we established that BHB provides an alternative carbon source to fuel oxidative phosphorylation (OXPHOS) and the production of bioenergetic amino acids and glutathione, which is important for maintaining the redox balance. T cells from patients with SARS-CoV-2-induced ARDS were exhausted and skewed towards glycolysis, but could be metabolically reprogrammed by BHB to perform OXPHOS, thereby increasing their functionality. Finally, we show in mice that a ketogenic diet and the delivery of BHB as a ketone ester drink restores CD4+ T cell metabolism and function in severe respiratory infections, ultimately reducing the mortality of mice infected with SARS-CoV-2. Altogether, our data reveal that BHB is an alternative source of carbon that promotes T cell responses in pulmonary viral infections, and highlight impaired ketogenesis as a potential confounding factor in severe COVID-19.


Assuntos
COVID-19 , Metabolismo Energético , Cetonas , Síndrome do Desconforto Respiratório , SARS-CoV-2 , Linfócitos T , Ácido 3-Hidroxibutírico/biossíntese , Ácido 3-Hidroxibutírico/metabolismo , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Animais , COVID-19/complicações , COVID-19/imunologia , COVID-19/patologia , Dieta Cetogênica , Ésteres/metabolismo , Glutationa/biossíntese , Glutationa/metabolismo , Glicólise , Interferon gama/biossíntese , Corpos Cetônicos/metabolismo , Cetonas/metabolismo , Camundongos , Orthomyxoviridae/patogenicidade , Oxirredução , Fosforilação Oxidativa , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/patogenicidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
7.
J Immunol ; 204(1): 87-100, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31776205

RESUMO

Cross-presentation allows dendritic cells (DCs) to present peptides derived from endocytosed Ags on MHC class I molecules, which is important for activating CTL against viral infections and tumors. Type 1 classical DCs (cDC1), which depend on the transcription factor Batf3, are considered the main cross-presenting cells. In this study, we report that soluble Ags are efficiently cross-presented also by transcription factor SpiC-dependent red pulp macrophages (RPM) of the spleen. In contrast to cDC1, RPM used the mannose receptor for Ag uptake and employed the proteasome- and TAP-dependent cytosolic cross-presentation pathway, previously shown to be used in vitro by bone marrow-derived DCs. In an in vivo vaccination model, both cDC1 and RPM cross-primed CTL efficiently but with distinct kinetics. Within a few days, RPM induced very early effector CTL of a distinct phenotype (Ly6A/E+ Ly6C(+) KLRG1- CD127- CX3CR1- Grz-B+). In an adenoviral infection model, such CTL contained the early viral spread, whereas cDC1 induced short-lived effector CTL that eventually cleared the virus. RPM-induced early effector CTL also contributed to the endogenous antiviral response but not to CTL memory generation. In conclusion, RPM can contribute to antiviral immunity by generating a rapid CTL defense force that contains the virus until cDC1-induced CTL are available to eliminate it. This function can be harnessed for improving vaccination strategies aimed at inducing CTL.


Assuntos
Infecções por Adenoviridae/imunologia , Animais , Células Cultivadas , Apresentação Cruzada/imunologia , Modelos Animais de Doenças , Células HEK293 , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Linfócitos T Citotóxicos/imunologia
8.
J Immunol ; 202(2): 550-558, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30559319

RESUMO

Charcot-Leyden crystals (CLCs) are Galectin-10 protein crystals that can form after eosinophils degranulate. CLCs can appear and persist in tissues from patients with eosinophilic disorders, such as asthma, allergic reactions, and fungal and helminthic infections. Despite abundant reports of their occurrence in human disease, the inflammatory potential of CLCs has remained unknown. In this article, we show that CLCs induce the release of the proinflammatory cytokine IL-1ß upon their phagocytosis by primary human macrophages in vitro. Chemical inhibition and small interfering RNA knockdown of NLRP3 in primary human macrophages abrogated their IL-1ß response to CLCs. Using C57BL/6 ASC-mCitrine transgenic inflammasome reporter mice, we showed that the instillation of CLCs into the lungs promoted the assembly of ASC complexes in infiltrating immune cells (neutrophils and inflammatory monocytes) and resulted in IL-1ß accumulation into the bronchoalveolar lavage fluid. Our findings reveal that CLCs are recognized by the NLRP3 inflammasome, which may sustain inflammation that follows eosinophilic inflammatory processes.


Assuntos
Eosinófilos/fisiologia , Galectinas/metabolismo , Inflamassomos/metabolismo , Inflamação/imunologia , Pulmão/fisiologia , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Degranulação Celular , Células Cultivadas , Cristalização , Galectinas/química , Humanos , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fagocitose , Cultura Primária de Células , RNA Interferente Pequeno/genética
10.
Cell Rep ; 21(3): 578-586, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045828

RESUMO

Regulatory T cells (Tregs) prevent autoimmunity but limit antitumor immunity. The canonical NF-κB signaling pathway both activates immunity and promotes thymic Treg development. Here, we report that mature Tregs continue to require NF-κB signaling through IκB-kinase ß (IKKß) after thymic egress. Mice lacking IKKß in mature Tregs developed scurfy-like immunopathology due to death of peripheral FoxP3+ Tregs. Also, pharmacological IKKß inhibition reduced Treg numbers in the circulation by ∼50% and downregulated FoxP3 and CD25 expression and STAT5 phosphorylation. In contrast, activated cytotoxic T lymphocytes (CTLs) were resistant to IKKß inhibition because other pathways, in particular nuclear factor of activated T cells (NFATc1) signaling, sustained their survival and expansion. In a melanoma mouse model, IKKß inhibition after CTL cross-priming improved the antitumor response and delayed tumor growth. In conclusion, prolonged IKKß inhibition decimates circulating Tregs and improves CTL responses when commenced after tumor vaccination, indicating that IKKß represents a druggable checkpoint.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , Neoplasias/enzimologia , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Apresentação Cruzada/imunologia , Homeostase , Quinase I-kappa B/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Fatores de Transcrição NFATC/metabolismo , Fenótipo , Transdução de Sinais , Vacinação
11.
Oncoimmunology ; 6(8): e1338995, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28920004

RESUMO

Tumor immune escape is a critical problem which frequently accounts for the failure of therapeutic tumor vaccines. Among the most potent suppressors of tumor immunity are myeloid derived suppressor cells (MDSCs). MDSCs can be targeted by all-trans-retinoic-acid (atRA), which reduced their numbers and increased response rates in several vaccination studies. However, not much is known about the optimal administration interval between atRA and the vaccine as well as about its mode of action. Here we demonstrate in 2 different murine tumor models that mice unresponsive to a therapeutic vaccine harbored higher MDSC numbers than did responders. Application of atRA overcame MDSC-mediated immunosuppression and restored tumor control. Importantly, atRA was protective only when administered 3 d after vaccination (delayed treatment), whereas simultaneous administration even decreased the anti-tumor immune response and reduced survival. When analyzing the underlying mechanisms, we found that delayed, but not simultaneous atRA treatment with vaccination abrogated the suppressive capacity in monocytic MDSCs and instead caused them to upregulate MHC-class-II. Consistently, MDSCs from patients with colorectal carcinoma also failed to upregulate HLA-DR after ex vivo treatment with TLR-ligation. Overall, we demonstrate that atRA can convert non-responders to responders to vaccination by suppressing MDSCs function and not only by reducing their number. Moreover, we identify a novel, strictly time-dependent mode of action of atRA to be considered during immunotherapeutic protocols in the future.

12.
Eur J Immunol ; 47(9): 1477-1487, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28667750

RESUMO

The pool of hematopoietic stem cells (HSCs) in the bone marrow is a mixture of resting, proliferating, and differentiating cells. Long-term repopulating HSCs (LT-HSC) are routinely enriched as Lin- Sca1+ c-Kit+ CD34- Flt3- CD150+ CD48- cells. The Flt3 ligand (Flt3L) and its receptor Flt3 are important regulators of HSC maintenance, expansion and differentiation. Using Flt3L-eGFP reporter mice, we show that endogenous Flt3L-eGFP-reporter RNA expression correlates with eGFP-protein expression. This Flt3L-eGFP-reporter expression distinguishes two LT-HSC populations with differences in gene expressions and reconstituting potential. Thus, Flt3L-eGFP-reporterlow cells are identified as predominantly resting HSCs with long-term repopulating capacities. In contrast, Flt3L-eGFP-reporterhigh cells are in majority proliferating HSCs with only short-term repopulating capacities. Flt3L-eGFP-reporterlow cells express hypoxia, autophagy-inducing, and the LT-HSC-associated genes HoxB5 and Fgd5, while Flt3L-eGFP-reporterhigh HSCs upregulate genes involved in HSC differentiation. Flt3L-eGFP-reporterlow cells develop to Flt3L-eGFP-reporterhigh cells in vitro, although Flt3L-eGFP-reporterhigh cells remain Flt3L-eGFP-reporterhigh . CD150+ Flt3L-eGFP-reporterlow cells express either endothelial protein C receptor (EPCR) or CD41, while Flt3L-eGFP-reporterhigh cells do express EPCR but not CD41. Thus, FACS-enrichment of Flt3/ Flt3L-eGFP-reporter negative, Lin- CD150+ CD48- EPCR+ CD41+ HSCs allows a further 5-fold enrichment of functional LT-HSCs.


Assuntos
Células da Medula Óssea/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Membrana/metabolismo , Animais , Autofagia/genética , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Células Cultivadas , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hipóxia/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
13.
J Immunol ; 198(8): 3033-3044, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275138

RESUMO

FcεRII is a multifunctional low-affinity IgER that is involved in the pathogenesis of allergic, inflammatory, and neoplastic diseases. Although discrepancies in FcεRII-mediated functions are being increasingly recognized, the consequences of FcεRII activation are not completely understood. In this study, we evaluated the expression of FcεRII on human blood cells and found that it was primarily expressed on monocytes and B cells. Although IL-4 promoted expression of the FcεRIIb isoform on B cells and monocytes, the expression of the FcεRIIa isoform was not dependent on IL-4. Furthermore, FcεRII predominantly bound allergen-IgE complexes on B cells but not on monocytes. FcεRII-mediated allergen-IgE complex uptake by B cells directed Ags to MHC class II-rich compartments. FcεRII-bearing monocytes and B cells expressed high levels of the FcεRII sheddase a disintegrin and metalloproteinase 10, which implies that they are important sources of soluble FcεRII. Moreover, we identified that IgE immune complex stimulation of FcεRII activated intracellular tyrosine phosphorylation via Syk in B cells but not in monocytes. Importantly, FcεRII-mediated signaling by allergen-IgE immune complexes increased IFN-γ production in B cells of allergic patients during the build-up phase of allergen-specific immunotherapy. Together, our results demonstrate that FcεRII mediates cell type-dependent function in allergic reactions. In addition, the results identify a novel allergen-IgE complex/FcεRII/Syk/IFN-γ pathway in allergic responses and suggest that FcεRII may play a role in regulating allergic reactions via modulating IFN-γ production in B cells.


Assuntos
Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Monócitos/imunologia , Receptores de IgE/imunologia , Hipersensibilidade Respiratória/imunologia , Adulto , Idoso , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Hipersensibilidade , Immunoblotting , Imunoprecipitação , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Transdução de Sinais/imunologia
14.
Sci Rep ; 6: 37996, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905484

RESUMO

During infection and inflammation, dendritic cells (DC) provide priming signals for natural killer (NK) cells via mechanisms distinct from their antigen processing and presentation functions. The influence of DC on resting NK cells, i.e. at steady-state, is less well studied. We here demonstrate that as early as 1 day after DC depletion, NK cells in naïve mice downregulated the NKG2D receptor and showed decreased constitutive phosphorylation of AKT and mTOR. Subsequently, apoptotic NK cells appeared in the spleen concomitant with reduced NK cell numbers. At 4 days after the onset of DC depletion, increased NK cell proliferation was seen in the spleen resulting in an accumulation of Ly49 receptor-negative NK cells. In parallel, NK cell responsiveness to ITAM-mediated triggering and cytokine stimulation dropped across maturation stages, suggestive of a functional deficiency independent from the homeostatic effect. A role for IL-15 in maintaining NK cell function was supported by a gene signature analysis of NK cell from DC-depleted mice as well as by in vivo DC transfer experiments. We propose that DC, by means of IL-15 transpresentation, are required to maintain not only homeostasis, but also function, at steady-state. These processes appear to be regulated independently from each other.


Assuntos
Antígeno CD11c/metabolismo , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Células Dendríticas/citologia , Homeostase , Humanos , Células Matadoras Naturais/citologia , Ativação Linfocitária , Camundongos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
15.
Oncoimmunology ; 5(10): e1204506, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27853636

RESUMO

In tumor biology, nitric oxide (NO) is generally regarded as an immunosuppressive molecule that impedes T-cell functions and activation of endothelial cells. Contrasting with this view, we here describe a critical role for NO derived from inducible nitric oxide (iNOS)-expressing tumor macrophages in T-cell infiltration and tumor rejection as shown by iNOS gene deletion, inhibition of iNOS, or NO donors. Specifically, macrophage-derived NO was found to induce on tumor vessels adhesion molecules that were required for T-cell extravasation. Experiments with human endothelial cells revealed a bimodal dose-dependent effect of NO. High doses of NO donors were indeed suppressive but lower, more physiological concentrations, induced adhesion molecules in an NFkB-dependent pathway and preferentially activated transcription of genes involved in lymphocyte diapedesis. iNOS+ macrophages in tumors appear to generate precisely the amount of NO that promotes endothelial activation and T-cell infiltration. These results will be valuable for the development of strategies designed to overcome the paucity of T-cell infiltration into tumors that is a major obstacle in clinical cancer immunotherapy.

16.
Immunity ; 45(2): 389-401, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27521269

RESUMO

CD8(+) T cells recognizing tumor-specific antigens are detected in cancer patients but are dysfunctional. Here we developed a tamoxifen-inducible liver cancer mouse model with a defined oncogenic driver antigen (SV40 large T-antigen) to follow the activation and differentiation of naive tumor-specific CD8(+) T (TST) cells after tumor initiation. Early during the pre-malignant phase of tumorigenesis, TST cells became dysfunctional, exhibiting phenotypic, functional, and transcriptional features similar to dysfunctional T cells isolated from late-stage human tumors. Thus, T cell dysfunction seen in advanced human cancers may already be established early during tumorigenesis. Although the TST cell dysfunctional state was initially therapeutically reversible, it ultimately evolved into a fixed state. Persistent antigen exposure rather than factors associated with the tumor microenvironment drove dysfunction. Moreover, the TST cell differentiation and dysfunction program exhibited features distinct from T cell exhaustion in chronic infections. Strategies to overcome this antigen-driven, cell-intrinsic dysfunction may be required to improve cancer immunotherapy.


Assuntos
Antígenos Transformantes de Poliomavirus/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Hepáticas/imunologia , Animais , Carcinogênese , Diferenciação Celular , Células Cultivadas , Senescência Celular , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/terapia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamoxifeno , Microambiente Tumoral
17.
Immunity ; 44(6): 1406-21, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27287410

RESUMO

Monobenzone is a pro-hapten that is exclusively metabolized by melanocytes, thereby haptenizing melanocyte-specific antigens, which results in cytotoxic autoimmunity specifically against pigmented cells. Studying monobenzone in a setting of contact hypersensitivity (CHS), we observed that monobenzone induced a long-lasting, melanocyte-specific immune response that was dependent on NK cells, yet fully intact in the absence of T- and B cells. Consistent with the concept of "memory NK cells," monobenzone-induced NK cells resided in the liver and transfer of these cells conferred melanocyte-specific immunity to naive animals. Monobenzone-exposed skin displayed macrophage infiltration and cutaneous lymph nodes showed an inflammasome-dependent influx of macrophages with a tissue-resident phenotype, coinciding with local NK cell activation. Indeed, macrophage depletion or the absence of the NLRP3 inflammasome, the adaptor protein ASC or interleukin-18 (IL-18) abolished monobenzone CHS, thereby establishing a non-redundant role for the NLRP3 inflammasome as a critical proinflammatory checkpoint in the induction of hapten-dependent memory NK cells.


Assuntos
Dermatite de Contato/imunologia , Memória Imunológica , Inflamassomos/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/fisiologia , Melanócitos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Imunidade Adaptativa , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Células Cultivadas , Hidroquinonas , Interleucina-18/genética , Interleucina-18/metabolismo , Fígado/patologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
20.
Cancer Immunol Immunother ; 65(3): 273-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26786874

RESUMO

Increased numbers of immunosuppressive myeloid derived suppressor cells (MDSCs) correlate with a poor prognosis in cancer patients. Tyrosine kinase inhibitors (TKIs) are used as standard therapy for the treatment of several neoplastic diseases. However, TKIs not only exert effects on the malignant cell clone itself but also affect immune cells. Here, we investigate the effect of TKIs on the induction of MDSCs that differentiate from mature human monocytes using a new in vitro model of MDSC induction through activated hepatic stellate cells (HSCs). We show that frequencies of monocytic CD14(+)HLA-DR(-/low) MDSCs derived from mature monocytes were significantly and dose-dependently reduced in the presence of dasatinib, nilotinib and sorafenib, whereas sunitinib had no effect. These regulatory effects were only observed when TKIs were present during the early induction phase of MDSCs through activated HSCs, whereas already differentiated MDSCs were not further influenced by TKIs. Neither the MAPK nor the NFκB pathway was modulated in MDSCs when any of the TKIs was applied. When functional analyses were performed, we found that myeloid cells treated with sorafenib, nilotinib or dasatinib, but not sunitinib, displayed decreased suppressive capacity with regard to CD8+ T cell proliferation. Our results indicate that sorafenib, nilotinib and dasatinib, but not sunitinib, decrease the HSC-mediated differentiation of monocytes into functional MDSCs. Therefore, treatment of cancer patients with these TKIs may in addition to having a direct effect on cancer cells also prevent the differentiation of monocytes into MDSCs and thereby differentially modulate the success of immunotherapeutic or other anti-cancer approaches.


Assuntos
Células Estreladas do Fígado/fisiologia , Células Mieloides/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Celecoxib/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Dasatinibe/farmacologia , Relação Dose-Resposta a Droga , Humanos , Tolerância Imunológica , Indóis/farmacologia , Monócitos/fisiologia , Células Mieloides/imunologia , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Sorafenibe , Sunitinibe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA