Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(7): 3600-3614, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38469889

RESUMO

Food ingredients have critical effects on the maturation and development of the immune system, which innate - lymphoid (ILCs) and myeloid - cells play key roles as important regulators of energy storage and hepatic fat accumulation. Therefore, the objective of this study is to define potential links between a dietary immunonutritional induction of the selective functional differentiation of monocytes-derived macrophages, ILCs and lipid homeostasis in hepatocarcinoma (HCC)-developing mice. Hepatic chemically injured (diethylnitrosamine/thiacetamide) Rag2-/- and Rag2-/-Il2-/- mice were administered with serine-type protease inhibitors (SETIs) obtained from Chenopodium quinoa. Early HCC-driven immunometabolic imbalances (infiltrated macrophages, glucose homeostasis, hepatic lipid profile, ILCs expansion, inflammatory conditions, microbiota) in animals put under a high-fat diet for 2 weeks were assessed. It was also approached the potential of SETIs to cause functional adaptations of the bioenergetics of human macrophage-like cells (hMLCs) in vitro conditioning their capacity to accumulate fat. It is showed that Rag2-/-Il2-/- mice, lacking ILCs, are resistant to the SETIs-induced hepatic macrophages (CD68+F4/80+) activation. Feeding SETIs to Rag2-/- mice, carrying ILCs, promoted the expansion towards ILC3s (CD117+Nkp46+CD56+) and reduced that of ILC2s (CD117+KLRG1+) into livers. In vitro studies demonstrate that hMLCs, challenged to SETIs, develop a similar phenotype of that found in mice and bioenergetic adaptations leading to increased lipolysis. It is concluded that SETIs promote liver macrophage activation and ILCs adaptations to ameliorate HCC-driven immunometabolic imbalances.


Assuntos
Carcinoma Hepatocelular , Chenopodium quinoa , Neoplasias Hepáticas , Camundongos , Humanos , Animais , Imunidade Inata , Linfócitos , Interleucina-2 , Inibidores de Serina Proteinase , Neoplasias Hepáticas/tratamento farmacológico , Lipídeos , Serina
2.
Biomedicines ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38397943

RESUMO

Nucleotide-binding oligomerization domain-like (NOD) receptors rely on the interface between immunity and metabolism. Dietary factors constitute critical players in the activation of innate immunity and modulation of the gut microbiota. The latter have been involved in worsening or improving the control and promotion of diseases such as obesity, type 2 diabetes, metabolic syndrome, diseases known as non-communicable metabolic diseases (NCDs), and the risk of developing cancer. Intracellular NODs play key coordinated actions with innate immune 'Toll-like' receptors leading to a diverse array of gene expressions that initiate inflammatory and immune responses. There has been an improvement in the understanding of the molecular and genetic implications of these receptors in, among others, such aspects as resting energy expenditure, insulin resistance, and cell proliferation. Genetic factors and polymorphisms of the receptors are determinants of the risk and severity of NCDs and cancer, and it is conceivable that dietary factors may have significant differential consequences depending on them. Host factors are difficult to influence, while environmental factors are predominant and approachable with a preventive and/or therapeutic intention in obesity, T2D, and cancer. However, beyond the recognition of the activation of NODs by peptidoglycan as its prototypical agonist, the underlying molecular response(s) and its consequences on these diseases remain ill-defined. Metabolic (re)programming is a hallmark of NCDs and cancer in which nutritional strategies might play a key role in preventing the unprecedented expansion of these diseases. A better understanding of the participation and effects of immunonutritional dietary ingredients can boost integrative knowledge fostering interdisciplinary science between nutritional precision and personalized medicine against cancer. This review summarizes the current evidence concerning the relationship(s) and consequences of NODs on immune and metabolic health.

3.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361073

RESUMO

This study evaluated the immunonutritional effects caused by protease inhibitors from Avena sativa and Triticum durum to human macrophage-like cells. Macrophages were exposed (3 h) to extracts obtained from flours, and mitochondrial-associated oxygen consumption rates and inflammatory, metabolic, and proteome adaptations were quantified. Mass spectrometry 'm/z' signals of the extracts obtained from T. durum and A. sativa revealed molecular weights of 18-35 kDa and 16-22 kDa, respectively, for the compounds present at highest concentrations. Extracts from T. durum exhibited lower susceptibility to degradation by gastrointestinal enzymes than those from A. sativa: 9.5% vs 20.2%. Despite their different botanical origin, both extracts increased TLR4 expression. Metabolic protein levels were indicative of a decreased glycolytic to lactate flux in cell cultures upon stimulation with A. sativa extracts, which improved mitochondrial respiration in relation to those from T. durum. Principal components analysis confirmed relative similarities between immune-metabolic events triggered by immunonutritional ingredients in T. durum and A. sativa. Collectively, immunonutritional effects help to interpret the differences between both crops, worsening or improving, macrophage immune reactivity (tolerogenicity), and better control of inflammatory processes.


Assuntos
Avena/química , Macrófagos/imunologia , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Inibidores de Proteases/farmacologia , Proteoma/efeitos dos fármacos , Triticum/química , Humanos , Macrófagos/efeitos dos fármacos
4.
Food Funct ; 6(8): 2440-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26130265

RESUMO

Hypertension is one of the most important causes of cardiovascular and renal morbidity and mortality, and it represents a serious health problem in Western countries. Over the last few decades scientific interest in food-derived antihypertensive peptides has grown as an alternative to drugs in the control of systemic blood pressure. Most of these peptides target the angiotensin I-converting enzyme (ACE) but emerging evidence points to other antihypertensive mechanisms beyond ACE inhibition. The milk protein lactoferrin (LF) is a good source of orally active antihypertensive peptides the characterization of which, including ex vivo functional assays and in vivo approaches, shows that they might act on several molecular targets. This review summarizes the mechanisms of action underlying the blood pressure-lowering effects of LF-derived peptides, focusing on their interaction with different components of the renin-angiotensin (RAS) and endothelin (ET) systems. The ability of LF-derived peptides to modify the expression of genes encoding proteins involved in the nitric oxide (NO) pathway and prostaglandin synthesis is also described.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Anti-Hipertensivos/farmacologia , Hipertensão/tratamento farmacológico , Lactoferrina/farmacologia , Peptídeos/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Anti-Hipertensivos/química , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Lactoferrina/química , Peptídeos/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo
5.
J Agric Food Chem ; 62(7): 1609-16, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24476136

RESUMO

Novel antihypertensive peptides released by Kluyveromyces marxianus from bovine lactoferrin (LF) have been identified. K. marxianus LF permeate was fractionated by semipreparative high performance liquid chromatography and 35 peptides contained in the angiotensin I-converting enzyme (ACE)-inhibitory fractions were identified by using an ion trap mass spectrometer. On the basis of peptide abundance and common structural features, six peptides were chemically synthesized. Four of them (DPYKLRP, PYKLRP, YKLRP, and GILRP) exerted in vitro inhibitory effects on ACE activity and effectively decreased systolic blood pressure after oral administration to spontaneously hypertensive rats (SHRs). Stability against gastrointestinal enzymes suggested that the sequence LRP could contribute to the in vivo effects of parental peptides. Finally, there were reductions in circulating ACE activity and angiotensin II level in SHRs after either DPYKLRP or LRP intake, thus confirming ACE inhibition as the in vivo mechanism for their antihypertensive effect.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Anti-Hipertensivos/administração & dosagem , Hipertensão/tratamento farmacológico , Kluyveromyces/metabolismo , Lactoferrina/metabolismo , Peptídeos/administração & dosagem , Administração Oral , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/metabolismo , Biotransformação , Pressão Sanguínea/efeitos dos fármacos , Bovinos , Humanos , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Lactoferrina/administração & dosagem , Lactoferrina/química , Masculino , Peptídeos/química , Peptídeos/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Ratos , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA