Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 207: 105416, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113629

RESUMO

Cellular responses to stress generally lead to the activation of the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Several lines of study support that ERAD may be playing a proviral role during flaviviral infection. A key host factor in ERAD is the valosin-containing protein (VCP), an ATPase which ushers ubiquitin-tagged proteins to degradation by the proteasome. VCP exhibits different proviral activities, such as engaging in the biogenesis of viral replication organelles and facilitating flavivirus genome uncoating after the viral particle entry. To investigate the possible antiviral value of drugs targeting VCP, we tested two inhibitors: eeyarestatin I (EEY) and xanthohumol (XAN). Both compounds were highly effective in suppressing Zika virus (ZIKV) and Usutu virus (USUV) replication during infection in cell culture. Further analysis revealed an unexpected virucidal activity for EEY, but not for XAN. Preincubation of ZIKV or USUV with EEY before inoculation to cells resulted in significant decreases in infectivity in a dose- and time-dependent manner. Viral genomes in samples previously treated with EEY were more sensitive to propidium monoazide, an intercalating agent, with 10- to 100-fold decreases observed in viral RNA levels, supporting that EEY affects viral particle integrity. Altogether, these results support that EEY is a strong virucide against two unrelated flaviviruses, encouraging further studies to investigate its potential use as a broad-acting drug or the development of improved derivatives in the treatment of flaviviral infection.


Assuntos
Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Adenosina Trifosfatases/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Flavivirus/genética , Humanos , Hidrazonas , Hidroxiureia/análogos & derivados , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Viral/genética , Ubiquitinas/metabolismo , Proteína com Valosina/metabolismo , Replicação Viral
2.
Emerg Microbes Infect ; 10(1): 1441-1456, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34213405

RESUMO

Zika virus (ZIKV) is a mosquito-borne pathogen with public health importance due to the high risk of its mosquito vector dissemination and the severe neurological and teratogenic sequelae associated with infection. Vaccines with broad immune specificity and control against this re-emerging virus are needed. Here, we described that mice immunized with a priming dose of a DNA plasmid mammalian expression vector encoding ZIKV prM-E antigens (DNA-ZIKV) followed by a booster dose of a modified vaccinia virus Ankara (MVA) vector expressing the same prM-E ZIKV antigens (MVA-ZIKV) induced broad, polyfunctional and long-lasting ZIKV-specific CD4+ and CD8+ T-cell immune responses, with high levels of CD4+ T follicular helper cells, together with the induction of neutralizing antibodies. All those immune parameters were significantly stronger in the heterologous DNA-ZIKV/MVA-ZIKV immunization group compared to the homologous prime/boost immunizations regimens. Collectively, these results provided an optimized immunization protocol able to induce high levels of ZIKV-specific T-cell responses, as well as neutralizing antibodies and reinforce the combined use of DNA-based vectors and MVA-ZIKV as promising prophylactic vaccination schedule against ZIKV.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Feminino , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Imunização , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Zika virus/genética , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
3.
Front Immunol ; 12: 824728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154086

RESUMO

We generated an optimized COVID-19 vaccine candidate based on the modified vaccinia virus Ankara (MVA) vector expressing a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein, termed MVA-CoV2-S(3P). The S(3P) protein was expressed at higher levels (2-fold) than the non-stabilized S in cells infected with the corresponding recombinant MVA viruses. One single dose of MVA-CoV2-S(3P) induced higher IgG and neutralizing antibody titers against parental SARS-CoV-2 and variants of concern than MVA-CoV2-S in wild-type C57BL/6 and in transgenic K18-hACE2 mice. In immunized C57BL/6 mice, two doses of MVA-CoV2-S or MVA-CoV2-S(3P) induced similar levels of SARS-CoV-2-specific B- and T-cell immune responses. Remarkably, a single administration of MVA-CoV2-S(3P) protected all K18-hACE2 mice from morbidity and mortality caused by SARS-CoV-2 infection, reducing SARS-CoV-2 viral loads, histopathological lesions, and levels of pro-inflammatory cytokines in the lungs. These results demonstrated that expression of a novel full-length prefusion-stabilized SARS-CoV-2 S protein by the MVA poxvirus vector enhanced immunogenicity and efficacy against SARS-CoV-2 in animal models, further supporting MVA-CoV2-S(3P) as an optimized vaccine candidate for clinical trials.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Idoso , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/mortalidade , Vacinas contra COVID-19/genética , Linhagem Celular Tumoral , Embrião de Galinha , Chlorocebus aethiops , Citocinas/análise , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasmídeos/genética , Glicoproteína da Espícula de Coronavírus/genética , Eficácia de Vacinas , Vacinas de DNA/genética , Vaccinia virus/imunologia , Células Vero , Vacinas Virais/genética
4.
Vaccines (Basel) ; 8(3)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764419

RESUMO

Hepatitis C virus (HCV) represents a major global health challenge and an efficient vaccine is urgently needed. Many HCV vaccination strategies employ recombinant versions of the viral E2 glycoprotein. However, recombinant E2 readily forms disulfide-bonded aggregates that might not be optimally suited for vaccines. Therefore, we have designed an E2 protein in which we strategically changed eight cysteines to alanines (E2.C8A). E2.C8A formed predominantly monomers and virtually no aggregates. Furthermore, E2.C8A also interacted more efficiently with broadly neutralizing antibodies than conventional E2. We used mice to evaluate different prime/boost immunization strategies involving a modified vaccinia virus Ankara (MVA) expressing the nearly full-length genome of HCV (MVA-HCV) in combination with either the E2 aggregates or the E2.C8A monomers. The combined MVA-HCV/E2 aggregates prime/boost strategy markedly enhanced HCV-specific effector memory CD4+ T cell responses and antibody levels compared to MVA-HCV/MVA-HCV. Moreover, the aggregated form of E2 induced higher levels of anti-E2 antibodies in vaccinated mice than E2.C8A monomers. These antibodies were cross-reactive and mainly of the IgG1 isotype. Our findings revealed how two E2 viral proteins that differ in their capacity to form aggregates are able to enhance to different extent the HCV-specific cellular and humoral immune responses, either alone or in combination with MVA-HCV. These combined protocols of MVA-HCV/E2 could serve as a basis for the development of a more effective HCV vaccine.

5.
PLoS Negl Trop Dis ; 13(7): e0007547, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31276466

RESUMO

BACKGROUND: Efficient adaptive antiviral cellular and humoral immune responses require previous recognition of viral antigenic peptides bound to human leukocyte antigen (HLA) class I and II molecules, which are exposed on the surface of infected and antigen presenting cells, respectively. The HLA-restricted immune response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe chronic polyarthralgia and polyarthritis, is largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a high-throughput mass spectrometry analysis of complex HLA-bound peptide pools isolated from large amounts of human cells infected with a vaccinia virus (VACV) recombinant expressing CHIKV structural proteins was carried out. Twelve viral ligands from the CHIKV polyprotein naturally presented by different HLA-A, -B, and -C class I, and HLA-DR and -DP class II molecules were identified. CONCLUSIONS/SIGNIFICANCE: The immunoprevalence of the HLA class II but not the HLA class I-restricted cellular immune response against the CHIKV structural polyprotein was greater than that against the VACV vector itself. In addition, most of the CHIKV HLA class I and II ligands detected by mass spectrometry are not conserved compared to its closely related O'nyong-nyong virus. These findings have clear implications for analysis of both cytotoxic and helper immune responses against CHIKV as well as for the future studies focused in the exacerbated T helper response linked to chronic musculoskeletal disorders in CHIKV patients.


Assuntos
Febre de Chikungunya/prevenção & controle , Antígenos de Histocompatibilidade Classe II/imunologia , Proteômica , Vaccinia virus , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Animais , Animais Geneticamente Modificados , Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Febre de Chikungunya/imunologia , Vírus Chikungunya , Humanos , Imunidade Celular , Imunogenicidade da Vacina , Espectrometria de Massas , Camundongos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinas Virais/genética
6.
J Proteome Res ; 18(3): 900-911, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30629447

RESUMO

Protective cellular and humoral immune responses require previous recognition of viral antigenic peptides complexed with human leukocyte antigen (HLA) class II molecules on the surface of the antigen presenting cells. The HLA class II-restricted immune response is important for the control and the clearance of poxvirus infection including vaccinia virus (VACV), the vaccine used in the worldwide eradication of smallpox. In this study, a mass spectrometry analysis was used to identify VACV ligands bound to HLA-DR and -DP class II molecules present on the surface of VACV-infected cells. Twenty-six naturally processed viral ligands among the tens of thousands of cell peptides bound to HLA class II proteins were identified. These viral ligands arose from 19 parental VACV proteins: A4, A5, A18, A35, A38, B5, B13, D1, D5, D7, D12, D13, E3, E8, H5, I2, I3, J2, and K2. The majority of these VACV proteins yielded one HLA ligand and were generated mainly, but not exclusively, by the classical HLA class II antigen processing pathway. Medium-sized and abundant proteins from the virion core and/or involved in the viral gene expression were the major source of VACV ligands bound to HLA-DR and -DP class II molecules. These findings will help to understand the effectiveness of current poxvirus-based vaccines and will be important in the design of new ones.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Ligantes , Proteômica/métodos , Vaccinia virus/química , Proteínas Estruturais Virais , Vírion/química , Células Cultivadas , Expressão Gênica , Humanos , Espectrometria de Massas , Poxviridae/imunologia , Vacínia/imunologia , Proteínas Virais/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais
7.
Sci Rep ; 8(1): 17385, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478418

RESUMO

Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that affects humans and can cause severe neurological complications, including Guillain-Barré syndrome and microcephaly. Since 2007 there have been three large outbreaks; the last and larger spread in the Americas in 2015. Actually, ZIKV is circulating in the Americas, Southeast Asia, and the Pacific Islands, and represents a potential pandemic threat. Given the rapid ZIKV dissemination and the severe neurological and teratogenic sequelae associated with ZIKV infection, the development of a safe and efficacious vaccine is critical. In this study, we have developed and characterized the immunogenicity and efficacy of a novel ZIKV vaccine based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the ZIKV prM and E structural genes (termed MVA-ZIKV). MVA-ZIKV expressed efficiently the ZIKV structural proteins, assembled in virus-like particles (VLPs) and was genetically stable upon nine passages in cell culture. Immunization of mice with MVA-ZIKV elicited antibodies that were able to neutralize ZIKV and induced potent and polyfunctional ZIKV-specific CD8+ T cell responses that were mainly of an effector memory phenotype. Moreover, a single dose of MVA-ZIKV reduced significantly the viremia in susceptible immunocompromised mice challenged with live ZIKV. These findings support the use of MVA-ZIKV as a potential vaccine against ZIKV.


Assuntos
Vaccinia virus/imunologia , Vacínia/imunologia , Proteínas Estruturais Virais/imunologia , Vacinas Virais/imunologia , Replicação Viral/imunologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Vetores Genéticos/imunologia , Células HeLa , Humanos , Imunização/métodos , Imunogenicidade da Vacina/imunologia , Camundongos , Mosquitos Vetores/imunologia , Vacinação/métodos
8.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29514907

RESUMO

Zaire and Sudan ebolavirus species cause a severe disease in humans and nonhuman primates (NHPs) characterized by a high mortality rate. There are no licensed therapies or vaccines against Ebola virus disease (EVD), and the recent 2013 to 2016 outbreak in West Africa highlighted the need for EVD-specific medical countermeasures. Here, we generated and characterized head-to-head the immunogenicity and efficacy of five vaccine candidates against Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing either the virus glycoprotein (GP) or GP together with the virus protein 40 (VP40) forming virus-like particles (VLPs). In a human monocytic cell line, the different MVA vectors (termed MVA-EBOVs and MVA-SUDVs) triggered robust innate immune responses, with production of beta interferon (IFN-ß), proinflammatory cytokines, and chemokines. Additionally, several innate immune cells, such as dendritic cells, neutrophils, and natural killer cells, were differentially recruited in the peritoneal cavity of mice inoculated with MVA-EBOVs. After immunization of mice with a homologous prime/boost protocol (MVA/MVA), total IgG antibodies against GP or VP40 from Zaire and Sudan ebolavirus were differentially induced by these vectors, which were mainly of the IgG1 and IgG3 isotypes. Remarkably, an MVA-EBOV construct coexpressing GP and VP40 protected chimeric mice challenged with EBOV to a greater extent than a vector expressing GP alone. These results support the consideration of MVA-EBOVs and MVA-SUDVs expressing GP and VP40 and producing VLPs as best-in-class potential vaccine candidates against EBOV and SUDV.IMPORTANCE EBOV and SUDV cause a severe hemorrhagic fever affecting humans and NHPs. Since their discovery in 1976, they have caused several sporadic epidemics, with the recent outbreak in West Africa from 2013 to 2016 being the largest and most severe, with more than 11,000 deaths being reported. Although some vaccines are in advanced clinical phases, less expensive, safer, and more effective licensed vaccines are desirable. We generated and characterized head-to-head the immunogenicity and efficacy of five novel vaccines against EBOV and SUDV based on the poxvirus MVA expressing GP or GP and VP40. The expression of GP and VP40 leads to the formation of VLPs. These MVA-EBOV and MVA-SUDV recombinants triggered robust innate and humoral immune responses in mice. Furthermore, MVA-EBOV recombinants expressing GP and VP40 induced high protection against EBOV in a mouse challenge model. Thus, MVA expressing GP and VP40 and producing VLPs is a promising vaccine candidate against EBOV and SUDV.


Assuntos
Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Proteínas da Matriz Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Quimiocinas/imunologia , Embrião de Galinha , República Democrática do Congo , Células Dendríticas/imunologia , Ebolavirus/genética , Glicoproteínas/biossíntese , Glicoproteínas/genética , Células HEK293 , Células HeLa , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interferon beta/imunologia , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/imunologia , Sudão , Vacinação , Vacinas de DNA , Proteínas da Matriz Viral/biossíntese , Proteínas da Matriz Viral/genética , Vacinas Virais/genética
9.
PLoS Negl Trop Dis ; 11(10): e0006036, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29084215

RESUMO

BACKGROUND: The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. METHODOLOGY/PRINCIPAL FINDINGS: By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. CONCLUSIONS/SIGNIFICANCE: Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.


Assuntos
Apresentação de Antígeno , Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Epitopos de Linfócito T/imunologia , Antígenos HLA-A/imunologia , Antígeno HLA-A2/imunologia , Proteínas Virais/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Febre de Chikungunya/genética , Febre de Chikungunya/virologia , Vírus Chikungunya/química , Vírus Chikungunya/genética , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Antígenos HLA-A/química , Antígenos HLA-A/genética , Humanos , Camundongos , Proteínas Virais/química , Proteínas Virais/genética
10.
J Virol ; 91(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179536

RESUMO

The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions.IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Anticorpos Anti-HIV/imunologia , Antígenos HIV/imunologia , Infecções por HIV/prevenção & controle , Interferon Tipo I/genética , Macaca mulatta , Masculino , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Vacinação , Vaccinia virus/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
11.
PLoS One ; 10(7): e0133595, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208356

RESUMO

In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1ß, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive and memory T-cell immune responses, as well as humoral responses. This novel HIV-1 gp120-14K immunogen might be considered as an HIV vaccine candidate for broad T and B-cell immune responses.


Assuntos
Proteínas de Transporte/imunologia , Antígenos HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Virais de Fusão/imunologia , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Imunidade Adaptativa , Animais , Anticorpos Neutralizantes/imunologia , Antígenos CD4/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Anticorpos Anti-HIV/imunologia , Antígenos HIV/genética , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Humanos , Imunidade Inata , Imunoglobulina G/imunologia , Memória Imunológica , Proteínas de Membrana , Polissacarídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Proteínas Virais de Fusão/genética
12.
J Virol ; 89(16): 8525-39, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041302

RESUMO

UNLABELLED: We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4(+) T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8(+) T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE: The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.


Assuntos
Vacinas contra a AIDS/imunologia , Produtos do Gene env/metabolismo , Vetores Genéticos/imunologia , Infecções por HIV/prevenção & controle , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes , Embrião de Galinha , Anticorpos Anti-HIV , Antígenos HIV/metabolismo , Macaca mulatta , Poxviridae/genética , Regiões Promotoras Genéticas/genética , Ensaio de Placa Viral
13.
J Antimicrob Chemother ; 70(6): 1833-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25724985

RESUMO

OBJECTIVES: The safety, immunogenicity, impact on the latent reservoir and rebound of viral load after therapeutic HIV-1 vaccination with recombinant modified vaccinia Ankara-based (MVA-B) HIV-1 vaccine expressing monomeric gp120 and the fused Gag-Pol-Nef polyprotein of clade B with or without a drug to reactivate latent HIV-1 (disulfiram) were assessed. METHODS: HIV-1-infected patients were randomized to receive three injections of MVA-B (n = 20) or placebo (n = 10). Twelve patients (eight who received vaccine and four who were given placebo) received a fourth dose of MVA-B followed by 3 months of disulfiram. Combined ART (cART) was discontinued 8 weeks after the last dose of MVA-B. Clinical Trials.gov identifier: NCT01571466. RESULTS: MVA-B was safe and well tolerated. A minor, but significant, increase in the T cell responses targeting vaccine inserts of Gag was observed [a median of 290, 403 and 435 spot-forming-cells/10(6) PBMCs at baseline, after two vaccinations and after three vaccinations, respectively; P = 0.02 and P = 0.04]. After interruption of cART, a modest delay in the rebound of the plasma viral load in participants receiving vaccine but not disulfiram was observed compared with placebo recipients (P = 0.01). The dynamics of the viral load rebound did not change in patients receiving MVA-B/disulfiram. No changes in the proviral reservoir were observed after disulfiram treatment. CONCLUSIONS: MVA-B vaccination was a safe strategy to increase Gag-specific T cell responses in chronically HIV-1-infected individuals, but it did not have a major impact on the latent reservoir or the rebound of plasma viral load after interruption of cART when given alone or in combination with disulfiram.


Assuntos
Vacinas contra a AIDS/efeitos adversos , Vacinas contra a AIDS/imunologia , Fármacos Anti-HIV/administração & dosagem , Infecções por HIV/terapia , HIV-1/imunologia , Vacinas contra a AIDS/administração & dosagem , Adulto , Dissulfiram/administração & dosagem , Portadores de Fármacos , Feminino , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Placebos/administração & dosagem , Plasma/virologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/imunologia , Vaccinia virus/genética , Carga Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética , Produtos do Gene pol do Vírus da Imunodeficiência Humana/imunologia
14.
J Virol ; 88(6): 3527-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24403588

RESUMO

UNLABELLED: There is a need to develop a single and highly effective vaccine against the emerging chikungunya virus (CHIKV), which causes a severe disease in humans. Here, we have generated and characterized the immunogenicity profile and the efficacy of a novel CHIKV vaccine candidate based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). MVA-CHIKV was stable in cell culture, expressed the CHIKV structural proteins, and triggered the cytoplasmic accumulation of Golgi apparatus-derived membranes in infected human cells. Furthermore, MVA-CHIKV elicited robust innate immune responses in human macrophages and monocyte-derived dendritic cells, with production of beta interferon (IFN-ß), proinflammatory cytokines, and chemokines. After immunization of C57BL/6 mice with a homologous protocol (MVA-CHIKV/MVA-CHIKV), strong, broad, polyfunctional, and durable CHIKV-specific CD8(+) T cell responses were elicited. The CHIKV-specific CD8(+) T cells were preferentially directed against E1 and E2 proteins and, to a lesser extent, against C protein. CHIKV-specific CD8(+) memory T cells of a mainly effector memory phenotype were also induced. The humoral arm of the immune system was significantly induced, as MVA-CHIKV elicited high titers of neutralizing antibodies against CHIKV. Remarkably, a single dose of MVA-CHIKV protected all mice after a high-dose challenge with CHIKV. In summary, MVA-CHIKV is an effective vaccine against chikungunya virus infection that induced strong, broad, highly polyfunctional, and long-lasting CHIKV-specific CD8(+) T cell responses, together with neutralizing antibodies against CHIKV. These results support the consideration of MVA-CHIKV as a potential vaccine candidate against CHIKV. IMPORTANCE: We have developed a novel vaccine candidate against chikungunya virus (CHIKV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing the CHIKV C, E3, E2, 6K, and E1 structural genes (termed MVA-CHIKV). Our findings revealed that MVA-CHIKV is a highly effective vaccine against chikungunya virus, with a single dose of the vaccine protecting all mice after a high-dose challenge with CHIKV. Furthermore, MVA-CHIKV is highly immunogenic, inducing strong innate responses: high, broad, polyfunctional, and long-lasting CHIKV-specific CD8(+) T cell responses, together with neutralizing antibodies against CHIKV. This work provides a potential vaccine candidate against CHIKV.


Assuntos
Infecções por Alphavirus/prevenção & controle , Vírus Chikungunya/imunologia , Vaccinia virus/genética , Vacinas Virais/administração & dosagem , Infecções por Alphavirus/imunologia , Infecções por Alphavirus/virologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Febre de Chikungunya , Vírus Chikungunya/genética , Citocinas/imunologia , Feminino , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Vaccinia virus/imunologia , Proteínas Estruturais Virais/administração & dosagem , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
15.
Expert Rev Vaccines ; 12(12): 1395-416, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24168097

RESUMO

The highly attenuated poxvirus strain modified vaccinia virus Ankara (MVA) has reached maturity as a vector delivery system and as a vaccine candidate against a broad spectrum of diseases. This has been largely recognized from research on virus-host cell interactions and immunological studies in pre-clinical and clinical trials. This review addresses the studies of MVA vectors used in phase I/II clinical trials, with the aim to provide the main findings obtained on their behavior when tested against relevant human diseases and cancer and also highlights the strategies currently implemented to improve the MVA immunogenicity. The authors assess that MVA vectors are progressing as strong vaccine candidates either alone or when administered in combination with other vectors.


Assuntos
Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/efeitos adversos , Vetores Genéticos , Vacinas/administração & dosagem , Vacinas/imunologia , Vaccinia virus/genética , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos , Vacinas/efeitos adversos
16.
PLoS One ; 8(6): e66894, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826170

RESUMO

Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-ß, IFN-α/ß-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4(+) and CD8(+) T cell adaptive and memory immune responses, which were mostly mediated by CD8(+) T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4(+) T cell responses were mainly directed against Env, while GPN-specific CD8(+) T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-ß signaling, could be a general strategy to improve the immunogenicity of poxvirus-based vaccine candidates.


Assuntos
Vacinas contra a AIDS/imunologia , Imunidade Adaptativa , Memória Imunológica , Interferons/metabolismo , Deleção de Sequência , Vaccinia virus/genética , Proteínas Virais , Vacinas contra a AIDS/genética , Animais , Linhagem Celular , Embrião de Galinha , Células Dendríticas/imunologia , Feminino , Vetores Genéticos , Anticorpos Anti-HIV/metabolismo , Antígenos HIV/genética , HIV-1/genética , Humanos , Imunidade Inata , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Poxviridae/genética , Transdução de Sinais , Linfócitos T/imunologia , Vacinas Sintéticas/imunologia , Proteínas Virais/genética
17.
J Virol ; 87(13): 7282-300, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23596307

RESUMO

A major goal in the control of hepatitis C infection is the development of a vaccine. Here, we have developed a novel HCV vaccine candidate based on the highly attenuated poxvirus vector MVA (referred to as MVA-HCV) expressing the nearly full-length (7.9-kbp) HCV sequence, with the aim to target almost all of the T and B cell determinants described for HCV. In infected cells, MVA-HCV produces a polyprotein that is subsequently processed into the structural and nonstructural HCV proteins, triggering the cytoplasmic accumulation of dense membrane aggregates. In both C57BL/6 and transgenic HLA-A2-vaccinated mice, MVA-HCV induced high, broad, polyfunctional, and long-lasting HCV-specific T cell immune responses. The vaccine-induced T cell response was mainly mediated by CD8 T cells; however, although lower in magnitude, the CD4(+) T cells were highly polyfunctional. In homologous protocol (MVA-HCV/MVA-HCV) the main CD8(+) T cell target was p7+NS2, whereas in heterologous combination (DNA-HCV/MVA-HCV) the main target was NS3. Antigenic responses were also detected against other HCV proteins (Core, E1-E2, and NS4), but the magnitude of the responses was dependent on the protocol used. The majority of the HCV-induced CD8(+) T cells were triple or quadruple cytokine producers. The MVA-HCV vaccine induced memory CD8(+) T cell responses with an effector memory phenotype. Overall, our data showed that MVA-HCV induced broad, highly polyfunctional, and durable T cell responses of a magnitude and quality that might be associated with protective immunity and open the path for future considerations of MVA-HCV as a prophylactic and/or therapeutic vaccine candidate against HCV.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Hepacivirus/genética , Hepacivirus/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Western Blotting , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Cricetinae , Citocinas/metabolismo , Vetores Genéticos , Antígeno HLA-A2/imunologia , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Microscopia de Fluorescência , Oligonucleotídeos/genética , Fosforilação , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Vacinas de DNA , Vacinas contra Hepatite Viral/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
18.
Virus Res ; 167(2): 391-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22659488

RESUMO

MVA-B is an attenuated poxvirus vector expressing human immunodeficiency virus type 1 Env, Gag, Pol, and Nef antigens from clade B, and is considered a promising HIV/AIDS vaccine candidate. Recently, a phase I clinical trial in human healthy volunteers has shown that MVA-B is safe and highly immunogenic, inducing broad, polyfunctional, and long-lasting CD4(+) and CD8(+) T cell responses to HIV-1 antigens, with preference for effector memory T cells; and it also triggers the induction of specific antibodies to Env in most of the vaccines. While MVA recombinants expressing HIV-1 antigens are being used or plan to use in therapeutic clinical trials, little is known on the effect of HIV-1 highly active antiretroviral therapy in MVA life cycle. To define this role, here we have evaluated in established cell cultures and human dendritic cells to what extent different HIV-1 protease inhibitors affect virus replication and expression of HIV-1 antigens during MVA-B infection. The results obtained revealed that the most commonly used HIV-1 protease inhibitors (atazanavir, ritonavir, and lopinavir) had no effect on MVA-B virus growth kinetics, even at higher concentrations than those normally used on HAART. Furthermore, expression of gp120 and the fused Gag-Pol-Nef polyprotein in permissive and non-permissive cells infected with MVA-B were also not affected. These findings are relevant information for the therapeutic use of MVA-B as an HIV-1/AIDS vaccine.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos HIV/biossíntese , Inibidores da Protease de HIV/farmacologia , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/fisiologia , Replicação Viral/efeitos dos fármacos , Sulfato de Atazanavir , Linhagem Celular , Humanos , Lopinavir/farmacologia , Testes de Sensibilidade Microbiana , Oligopeptídeos/farmacologia , Piridinas/farmacologia , Ritonavir/farmacologia , Vaccinia virus/genética
19.
PLoS One ; 6(8): e24244, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21909386

RESUMO

The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-ß and IFN-α/ß-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-ß-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.


Assuntos
Vacinas contra a AIDS/imunologia , Genes Virais/genética , HIV-1/imunologia , Memória Imunológica/imunologia , Linfócitos T/imunologia , Vaccinia virus/genética , Animais , Anticorpos Antivirais/imunologia , Galinhas , Células Dendríticas/imunologia , Células Dendríticas/virologia , Proteína gp120 do Envelope de HIV/imunologia , Humanos , Imunidade Humoral/imunologia , Imunização , Interferon beta/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Transporte Proteico , Especificidade da Espécie
20.
J Virol ; 85(21): 11468-78, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21865377

RESUMO

Attenuated poxvirus vectors expressing human immunodeficiency virus type 1 (HIV-1) antigens are considered promising HIV/AIDS vaccine candidates. Here, we describe the nature of T cell immune responses induced in healthy volunteers participating in a phase I clinical trial in Spain after intramuscular administration of three doses of the recombinant MVA-B-expressing monomeric gp120 and the fused Gag-Pol-Nef (GPN) polyprotein of clade B. The majority (92.3%) of the volunteers immunized had a positive specific T cell response at any time postvaccination as detected by gamma interferon (IFN-γ) intracellular cytokine staining (ICS) assay. The CD4(+) T cell responses were predominantly Env directed, whereas the CD8(+) T cell responses were similarly distributed against Env, Gag, and GPN. The proportion of responders after two doses of MVA-B was similar to that obtained after the third dose of MVA-B vaccination, and the responses were sustained (84.6% at week 48). Vaccine-induced CD8(+) T cells to HIV-1 antigens after 1 year were polyfunctional and distributed mainly within the effector memory (TEM) and terminally differentiated effector memory (TEMRA) T cell populations. Antivector T cell responses were mostly induced by CD8(+) T cells, highly polyfunctional, and of TEMRA phenotype. These findings demonstrate that the poxvirus MVA-B vaccine candidate given alone is highly immunogenic, inducing broad, polyfunctional, and long-lasting CD4 and CD8 T cell responses to HIV-1 antigens, with preference for TEM. Thus, on the basis of the immune profile of MVA-B in humans, this immunogen can be considered a promising HIV/AIDS vaccine candidate.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/imunologia , Síndrome da Imunodeficiência Adquirida/prevenção & controle , Antígenos HIV/imunologia , Memória Imunológica , Linfócitos T/imunologia , Vacinas contra a AIDS/genética , Portadores de Fármacos , Vetores Genéticos , Antígenos HIV/genética , HIV-1/imunologia , Humanos , Imunização Secundária/métodos , Injeções Intramusculares , Interferon gama/biossíntese , Espanha , Fatores de Tempo , Vacinação/métodos , Vaccinia virus/genética , Vaccinia virus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA