Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8389, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104163

RESUMO

Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.


Assuntos
Vasos Linfáticos , Linfedema , Humanos , Células Endoteliais/metabolismo , Vasos Linfáticos/metabolismo , Linfangiogênese/fisiologia , Linfedema/patologia , Transdução de Sinais
2.
Front Immunol ; 14: 1235812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744339

RESUMO

The tumor microenvironment (TME) is an intricate complex and dynamic structure composed of various cell types, including tumor, stromal and immune cells. Within this complex network, lymphatic endothelial cells (LECs) play a crucial role in regulating immune responses and influencing tumor progression and metastatic dissemination to lymph node and distant organs. Interestingly, LECs possess unique immunomodulatory properties that can either promote or inhibit anti-tumor immune responses. In fact, tumor-associated lymphangiogenesis can facilitate tumor cell dissemination and metastasis supporting immunoevasion, but also, different molecular mechanisms involved in LEC-mediated anti-tumor immunity have been already described. In this context, the crosstalk between cancer cells, LECs and immune cells and how this communication can shape the immune landscape in the TME is gaining increased interest in recent years. In this review, we present a comprehensive and updated report about the immunomodulatory properties of the lymphatic endothelium within the TME, with special focus on primary tumors and tumor-draining lymph nodes. Furthermore, we outline emerging research investigating the potential therapeutic strategies targeting the lymphatic endothelium to enhance anti-tumor immune responses. Understanding the intricate mechanisms involved in LEC-mediated immune modulation in the TME opens up new possibilities for the development of innovative approaches to fight cancer.


Assuntos
Endotélio Linfático , Microambiente Tumoral , Células Endoteliais , Comunicação , Reações Cruzadas
4.
Antioxidants (Basel) ; 12(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37237967

RESUMO

The role played by a sustained angiogenesis in cancer and other diseases stimulates the interest in the search for new antiangiogenic drugs. In this manuscript, we provide evidence that 1,8- dihydroxy-9,10-anthraquinone (danthron), isolated from the fermentation broth of the marine fungus Chromolaenicola sp. (HL-114-33-R04), is a new inhibitor of angiogenesis. The results obtained with the in vivo CAM assay indicate that danthron is a potent antiangiogenic compound. In vitro studies with human umbilical endothelial cells (HUVEC) reveal that this anthraquinone inhibits certain key functions of activated endothelial cells, including proliferation, proteolytic and invasive capabilities and tube formation. In vitro studies with human breast carcinoma MDA-MB231 and fibrosarcoma HT1080 cell lines suggest a moderate antitumor and antimetastatic activity of this compound. Antioxidant properties of danthron are evidenced by the observation that it reduces the intracellular reactive oxygen species production and increases the amount of intracellular sulfhydryl groups in endothelial and tumor cells. These results support a putative role of danthron as a new antiangiogenic drug with potential application in the treatment and angioprevention of cancer and other angiogenesis-dependent diseases.

5.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232355

RESUMO

The dynamic crosstalk between the different components of the tumor microenvironment is critical to determine cancer progression, metastatic dissemination, tumor immunity, and therapeutic responses. Angiogenesis is critical for tumor growth, and abnormal blood vessels contribute to hypoxia and acidosis in the tumor microenvironment. In this hostile environment, cancer and stromal cells have the ability to alter their metabolism in order to support the high energetic demands and favor rapid tumor proliferation. Recent advances have shown that tumor endothelial cell metabolism is reprogrammed, and that targeting endothelial metabolic pathways impacts developmental and pathological vessel sprouting. Therefore, the use of metabolic antiangiogenic therapies to normalize the blood vasculature, in combination with immunotherapies, offers a clinical niche to treat cancer.


Assuntos
Células Endoteliais , Neoplasias , Células Endoteliais/metabolismo , Humanos , Imunoterapia , Neoplasias/patologia , Neovascularização Patológica/patologia , Microambiente Tumoral
6.
Biomed Pharmacother ; 155: 113759, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271548

RESUMO

The inhibition of sustained angiogenesis is an attractive approach for the treatment of cancer, blindness and other angiogenesis-dependent diseases. Encouraged by our previous finding that toluquinol, a methyl hydroquinone isolated from a marine fungus, exhibited an interesting antiangiogenic activity, we further explored structural modifications of this natural compound in order to develop improved drug candidates. Our results indicate that although the methyl group plays a relevant role in the cytotoxic activity of toluquinol, some derivatives in which this methyl was replaced by another substituent, could keep the antiangiogenic activity, whereas exhibiting a lower cytotoxicity in vitro. This is the case of (E)- 2-(3-methoxyprop-1-en-1-yl) benzene-1,4-diol, which exhibits a decreased toxicity, whereas maintaining or even improving the antiangiogenic activity of toluquinol, as demonstrated by a number of in vitro (endothelial cells proliferation, migration and tube formation) and in vivo (chick embryo chrorioallantoic membrane vascularization and murine corneal neovascularization) experimental approaches. Our results point to a mechanism of action that could be related to an induction of apoptosis, as well as to an increase in the reactive oxygen species levels, a reduction of the redox capacity and the inhibition of the VEGFR2, Akt and ERK phosphorylation in VEGF-activated endothelial cells. The biological activity of this new angiogenesis inhibitor, along with its lower undesired toxicity, suggests that it is a promising drug candidate with improved potential for the treatment of angiogenesis-related diseases.


Assuntos
Inibidores da Angiogênese , Hidroquinonas , Embrião de Galinha , Animais , Camundongos , Humanos , Inibidores da Angiogênese/uso terapêutico , Hidroquinonas/farmacologia , Hidroquinonas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio , Benzeno , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/tratamento farmacológico , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo
8.
Pharmaceutics ; 14(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35213989

RESUMO

The number of cancer cases worldwide keeps growing unstoppably, despite the undeniable advances achieved by basic research and clinical practice. Urologic tumors, including some as prevalent as prostate, bladder or kidney tumors, are no exceptions to this rule. Moreover, the fact that many of these tumors are detected in early stages lengthens the duration of their treatment, with a significant increase in health care costs. In this scenario, prevention offers the most cost-effective long-term strategy for the global control of these diseases. Although specialized diets are not the only way to decrease the chances to develop cancer, epidemiological evidence support the role of certain plant-derived foods in the prevention of urologic cancer. In many cases, these plants are rich in antiangiogenic phytochemicals, which could be responsible for their protective or angiopreventive properties. Angiogenesis inhibition may contribute to slow down the progression of the tumor at very different stages and, for this reason, angiopreventive strategies could be implemented at different levels of chemoprevention, depending on the targeted population. In this review, epidemiological evidence supporting the role of certain plant-derived foods in urologic cancer prevention are presented, with particular emphasis on their content in bioactive phytochemicals that could be used in the angioprevention of cancer.

9.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680238

RESUMO

Growth factors such as vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and epidermal growth factor (EGF) are important angiogenesis-mediating factors. They exert their effects not only through their respective receptor tyrosine kinases (RTKs), but they also require molecular pairing with heparan sulfate proteoglycans (HSPGs). Angiogenic growth factors and their signaling pathways are commonly targeted in current anti-angiogenic cancer therapies but have unfortunately insufficient impact on patient survival. Considering their obvious role in pathological angiogenesis, HS-targeting drugs have become an appealing new strategy. Therefore, we aimed to reduce angiogenesis through interference with growth factor-HS binding and downstream signaling using a CXCL9-derived peptide with a high affinity for glycosaminoglycans (GAGs), CXCL9(74-103). We showed that CXCL9(74-103) reduced EGF-, VEGF165- and FGF-2-mediated angiogenic processes in vitro, such as endothelial cell proliferation, chemotaxis, adhesion and sprouting, without exerting cell toxicity. CXCL9(74-103) interfered with growth factor signaling in diverse ways, e.g., by diminishing VEGF165 binding to HS and by direct association with FGF-2. The dependency of CXCL9(74-103) on HS for binding to HMVECs and for exerting its anti-angiogenic activity was also demonstrated. In vivo, CXCL9(74-103) attenuated neovascularization in the Matrigel plug assay, the corneal cauterization assay and in MDA-MB-231 breast cancer xenografts. Additionally, CXCL9(74-103) reduced vascular leakage in the retina of diabetic rats. In contrast, CXCL9(86-103), a peptide with low GAG affinity, showed no overall anti-angiogenic activity. Altogether, our results indicate that CXCL9(74-103) reduces angiogenesis by interfering with multiple HS-dependent growth factor signaling pathways.

10.
Biomed Pharmacother ; 144: 112263, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34626933

RESUMO

The tropical plant Annona muricata has been widely used for traditional ethnobotanic and pharmacologic applications. Extracts from different parts of this plant have been shown to have a wide range of biological activities. In the present study, we carry out a metabolomic study of both aqueous and DMSO extracts from Annona muricata leaves that has allowed us to identify 33 bioactive compounds. Furthermore, we have shown that aqueous extracts are able to inhibit endothelial cell migration and both aqueous and DMSO extracts inhibit the formation of tubule-like structures by endothelial cells cultured on Matrigel. We conclude that extracts of Annona muricata leaves have great potential as anti-angiogenic natural combinations of bioactive compounds.


Assuntos
Inibidores da Angiogênese/farmacologia , Annona , Células Endoteliais/efeitos dos fármacos , Metabolômica , Neovascularização Fisiológica/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Inibidores da Angiogênese/isolamento & purificação , Animais , Annona/metabolismo , Bovinos , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Metaboloma , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Espectrometria de Massas por Ionização por Electrospray
11.
STAR Protoc ; 2(3): 100523, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34382011

RESUMO

Endothelial cells (ECs) exhibit phenotypic and functional tissue specificities, critical for studies in the vascular field and beyond. Thus, tissue-specific methods for isolation of highly purified ECs are necessary. Kidney, spleen, and testis ECs are relevant players in health and diseases such as chronic kidney disease, acute kidney injury, myelofibrosis, and cancer. Here, we provide tailored protocols for rapid and reproducible EC purification established for scRNA sequencing from these adult murine tissues using the combination of magnetic- and fluorescence-activated cell sorting. For complete details on the use and execution of these protocols, please refer to Kalucka et al. (2020) and Dumas et al. (2020).


Assuntos
Células Endoteliais/citologia , Rim/citologia , Baço/citologia , Testículo/citologia , Animais , Citometria de Fluxo , Masculino , Camundongos
12.
Cell Rep ; 35(11): 109253, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133923

RESUMO

Tumor vessel co-option is poorly understood, yet it is a resistance mechanism against anti-angiogenic therapy (AAT). The heterogeneity of co-opted endothelial cells (ECs) and pericytes, co-opting cancer and myeloid cells in tumors growing via vessel co-option, has not been investigated at the single-cell level. Here, we use a murine AAT-resistant lung tumor model, in which VEGF-targeting induces vessel co-option for continued growth. Single-cell RNA sequencing (scRNA-seq) of 31,964 cells reveals, unexpectedly, a largely similar transcriptome of co-opted tumor ECs (TECs) and pericytes as their healthy counterparts. Notably, we identify cell types that might contribute to vessel co-option, i.e., an invasive cancer-cell subtype, possibly assisted by a matrix-remodeling macrophage population, and another M1-like macrophage subtype, possibly involved in keeping or rendering vascular cells quiescent.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/patologia , Análise de Célula Única , Animais , Linhagem Celular Tumoral , Células Endoteliais/patologia , Feminino , Neoplasias Renais/patologia , Neoplasias Pulmonares/secundário , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Células Mieloides/patologia , Pericitos/patologia
13.
Eur Respir J ; 57(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33184117

RESUMO

Cystic fibrosis (CF) is a life-threatening disorder characterised by decreased pulmonary mucociliary and pathogen clearance, and an exaggerated inflammatory response leading to progressive lung damage. CF is caused by bi-allelic pathogenic variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel. CFTR is expressed in endothelial cells (ECs) and EC dysfunction has been reported in CF patients, but a role for this ion channel in ECs regarding CF disease progression is poorly described.We used an unbiased RNA sequencing approach in complementary models of CFTR silencing and blockade (by the CFTR inhibitor CFTRinh-172) in human ECs to characterise the changes upon CFTR impairment. Key findings were further validated in vitro and in vivo in CFTR-knockout mice and ex vivo in CF patient-derived ECs.Both models of CFTR impairment revealed that EC proliferation, migration and autophagy were downregulated. Remarkably though, defective CFTR function led to EC activation and a persisting pro-inflammatory state of the endothelium with increased leukocyte adhesion. Further validation in CFTR-knockout mice revealed enhanced leukocyte extravasation in lung and liver parenchyma associated with increased levels of EC activation markers. In addition, CF patient-derived ECs displayed increased EC activation markers and leukocyte adhesion, which was partially rescued by the CFTR modulators VX-770 and VX-809.Our integrated analysis thus suggests that ECs are no innocent bystanders in CF pathology, but rather may contribute to the exaggerated inflammatory phenotype, raising the question of whether normalisation of vascular inflammation might be a novel therapeutic strategy to ameliorate the disease severity of CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Endoteliais/metabolismo , Humanos , Fenótipo , Transcriptoma
14.
Trends Endocrinol Metab ; 31(8): 580-595, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32622584

RESUMO

Angiogenesis is crucial for the development of the blood vasculature during embryogenesis, but also contributes to cancer and other diseases. While therapeutic targeting of endothelial cells (ECs) through growth factor inhibition is limited by insufficient efficacy and resistance, a new paradigm for modulating angiogenesis by targeting EC metabolism has emerged. Findings from the past decade highlight how ECs adapt their metabolism to proliferate or migrate during vessel sprouting, or to maintain the vascular barrier and protect themselves against oxidative stress in the high-oxygen environment they are exposed to in healthy conditions. We overview key endothelial metabolic pathways underlying the different EC phenotypes, as well as potential opportunities for targeting EC metabolism in therapeutic settings.


Assuntos
Células Endoteliais/metabolismo , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/fisiologia , Animais , Humanos , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética , Estresse Oxidativo/fisiologia
15.
Cell Metab ; 31(4): 862-877.e14, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268117

RESUMO

Endothelial cell (EC) metabolism is an emerging target for anti-angiogenic therapy in tumor angiogenesis and choroidal neovascularization (CNV), but little is known about individual EC metabolic transcriptomes. By single-cell RNA sequencing 28,337 murine choroidal ECs (CECs) and sprouting CNV-ECs, we constructed a taxonomy to characterize their heterogeneity. Comparison with murine lung tumor ECs (TECs) revealed congruent marker gene expression by distinct EC phenotypes across tissues and diseases, suggesting similar angiogenic mechanisms. Trajectory inference predicted that differentiation of venous to angiogenic ECs was accompanied by metabolic transcriptome plasticity. ECs displayed metabolic transcriptome heterogeneity during cell-cycle progression and in quiescence. Hypothesizing that conserved genes are important, we used an integrated analysis, based on congruent transcriptome analysis, CEC-tailored genome-scale metabolic modeling, and gene expression meta-analysis in cross-species datasets, followed by in vitro and in vivo validation, to identify SQLE and ALDH18A1 as previously unknown metabolic angiogenic targets.


Assuntos
Células Endoteliais/metabolismo , Neoplasias Pulmonares/metabolismo , Degeneração Macular/metabolismo , Neovascularização Patológica/metabolismo , Transcriptoma , Animais , Células Endoteliais/citologia , Células Endoteliais/patologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única
17.
Cancer Cell ; 37(1): 21-36.e13, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31935371

RESUMO

Heterogeneity of lung tumor endothelial cell (TEC) phenotypes across patients, species (human/mouse), and models (in vivo/in vitro) remains poorly inventoried at the single-cell level. We single-cell RNA (scRNA)-sequenced 56,771 endothelial cells from human/mouse (peri)-tumoral lung and cultured human lung TECs, and detected 17 known and 16 previously unrecognized phenotypes, including TECs putatively regulating immune surveillance. We resolved the canonical tip TECs into a known migratory tip and a putative basement-membrane remodeling breach phenotype. Tip TEC signatures correlated with patient survival, and tip/breach TECs were most sensitive to vascular endothelial growth factor blockade. Only tip TECs were congruent across species/models and shared conserved markers. Integrated analysis of the scRNA-sequenced data with orthogonal multi-omics and meta-analysis data across different human tumors, validated by functional analysis, identified collagen modification as a candidate angiogenic pathway.


Assuntos
Células Endoteliais/citologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Neovascularização Patológica , Inibidores da Angiogênese/farmacologia , Animais , Membrana Basal/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Análise por Conglomerados , Colágeno/química , Endotélio Vascular/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Fenótipo , Análise de Célula Única , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Nutrients ; 11(9)2019 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31480406

RESUMO

Diet-based chemoprevention of cancer has emerged as an interesting approach to evade the disease or even target its early phases, reducing its incidence or slowing down tumor progression. In its basis in the essential role of angiogenesis for tumor growth and metastasis, angioprevention proposes the use of inhibitors of angiogenesis in cancer prevention. The anti-angiogenic potential exhibited by many natural compounds contained in many Mediterranean diet constituents makes this dietary pattern especially interesting as a source of chemopreventive agents, defined within the angioprevention strategy. In this review, we focus on natural bioactive compounds derived from the main foods included in the Mediterranean diet that display anti-angiogenic activity, as well as their possible use as angiopreventive agents.


Assuntos
Dieta Mediterrânea , Neoplasias/prevenção & controle , Inibidores da Angiogênese/análise , Quimioprevenção/métodos , Humanos , Neovascularização Patológica/prevenção & controle
19.
Cell Metab ; 30(5): 917-936.e10, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31447322

RESUMO

Among mammary tumor-infiltrating immune cells, the highest expression of podoplanin (PDPN) is found in a subset of tumor-associated macrophages (TAMs). We hereby demonstrate that PDPN is involved in the attachment of this TAM subset to lymphatic endothelial cells (LECs). Mechanistically, the binding of PDPN to LEC-derived galectin 8 (GAL8) in a glycosylation-dependent manner promotes the activation of pro-migratory integrin ß1. When proximal to lymphatics, PDPN-expressing macrophages (PoEMs) stimulate local matrix remodeling and promote vessel growth and lymphoinvasion. Anti-integrin ß1 blockade, macrophage-specific Pdpn knockout, or GAL8 inhibition impairs TAM adhesion to LECs, restraining lymphangiogenesis and reducing lymphatic cancer spread. In breast cancer patients, association of PoEMs with tumor lymphatic vessels correlates with incidences of lymph node and distant organ metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Linfonodos/patologia , Linfangiogênese/genética , Metástase Linfática/genética , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Feminino , Humanos , Vasos Linfáticos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade
20.
Endocr Relat Cancer ; 26(2): 201-216, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444717

RESUMO

Oestrogen signalling pathways are emerging targets for lung cancer therapy. Unravelling the contribution of oestrogens in lung cancer development is a pre-requisite to support the development of sex-based treatments and identify patients who could potentially benefit from anti-oestrogen treatments. In this study, we highlight the contribution of lymphatic and blood endothelia in the sex-dependent modulation of lung cancer. The orthotopic graft of syngeneic lung cancer cells into immunocompetent mice showed that lung tumours grow faster in female mice than in males. Moreover, oestradiol (E2) promoted tumour development, increased lymph/angiogenesis and VEGFA and bFGF levels in lung tumours of females through an oestrogen receptor (ER) alpha-dependent pathway. Furthermore, while treatment with ERb antagonist was inefficient, ERa antagonist (MPP) and tamoxifen decreased lung tumour volumes, altered blood and lymphatic vasculature and reduced VEGFA and bFGF levels in females, but not in males. Finally, the quantification of lymphatic and blood vasculature of lung adenocarcinoma biopsies from patients aged between 35 and 55 years revealed more extensive lymphangiogenesis and angiogenesis in tumour samples issued from women than from men. In conclusion, our findings highlight an E2/ERa-dependent modulation of lymphatic and blood vascular components of lung tumour microenvironment. Our study has potential clinical implication in a personalised medicine perspective by pointing to the importance of oestrogen status or supplementation on lung cancer development that should be considered to adapt therapeutic strategies.


Assuntos
Carcinoma Pulmonar de Lewis/epidemiologia , Receptor alfa de Estrogênio/fisiologia , Adulto , Animais , Técnicas de Cultura de Células , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Caracteres Sexuais , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA