Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 12(9)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927904

RESUMO

RAS mutations are the second most common genetic alteration in thyroid tumors. However, the extent to which they are associated with the most aggressive phenotypes is still controversial. Regarding their malignancy, the majority of RAS mutant tumors are classified as undetermined, which complicates their clinical management and can lead to undesired under- or overtreatment. Using the chick embryo spontaneous metastasis model, we herein demonstrate that the aggressiveness of HRAS-transformed thyroid cells, as determined by the ability to extravasate and metastasize at distant organs, is orchestrated by HRAS subcellular localization. Remarkably, aggressiveness inversely correlates with tumor size. In this respect, we also show that RAS site-specific capacity to regulate tumor growth and dissemination is dependent on VEGF-B secretion. Furthermore, we have identified the acyl protein thioesterase APT-1 as a determinant of thyroid tumor growth versus dissemination. We show that alterations in APT-1 expression levels can dramatically affect the behavior of thyroid tumors, based on its role as a regulator of HRAS sublocalization at distinct plasma membrane microdomains. In agreement, APT-1 emerges in thyroid cancer clinical samples as a prognostic factor. As such, APT-1 levels could serve as a biomarker that could help in the stratification of HRAS mutant thyroid tumors based on their aggressiveness.

2.
Arterioscler Thromb Vasc Biol ; 38(5): 1216-1229, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29449337

RESUMO

OBJECTIVE: ALK1 (activin-receptor like kinase 1) is an endothelial cell-restricted receptor with high affinity for BMP (bone morphogenetic protein) 9 TGF-ß (transforming growth factor-ß) family member. Loss-of-function mutations in ALK1 cause a subtype of hereditary hemorrhagic telangiectasia-a rare disease characterized by vasculature malformations. Therapeutic strategies are aimed at reducing potential complications because of vascular malformations, but currently, there is no curative treatment for hereditary hemorrhagic telangiectasia. APPROACH AND RESULTS: In this work, we report that a reduction in ALK1 gene dosage (heterozygous ALK1+/- mice) results in enhanced retinal endothelial cell proliferation and vascular hyperplasia at the sprouting front. We found that BMP9/ALK1 represses VEGF (vascular endothelial growth factor)-mediated PI3K (phosphatidylinositol 3-kinase) by promoting the activity of the PTEN (phosphatase and tensin homolog). Consequently, loss of ALK1 function in endothelial cells results in increased activity of the PI3K pathway. These results were confirmed in cutaneous telangiectasia biopsies of patients with hereditary hemorrhagic telangiectasia 2, in which we also detected an increase in endothelial cell proliferation linked to an increase on the PI3K pathway. In mice, genetic and pharmacological inhibition of PI3K is sufficient to abolish the vascular hyperplasia of ALK1+/- retinas and in turn normalize the vasculature. CONCLUSIONS: Overall, our results indicate that the BMP9/ALK1 hub critically mediates vascular quiescence by limiting PI3K signaling and suggest that PI3K inhibitors could be used as novel therapeutic agents to treat hereditary hemorrhagic telangiectasia.


Assuntos
Receptores de Activinas Tipo II/genética , Receptores de Ativinas Tipo I/genética , Células Endoteliais/enzimologia , Mutação , Neovascularização Patológica , Fosfatidilinositol 3-Quinase/metabolismo , Telangiectasia Retiniana/genética , Telangiectasia Hemorrágica Hereditária/genética , Receptores de Ativinas Tipo I/deficiência , Inibidores da Angiogênese/farmacologia , Animais , Estudos de Casos e Controles , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Ativação Enzimática , Deleção de Genes , Predisposição Genética para Doença , Fator 2 de Diferenciação de Crescimento/farmacologia , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Hiperplasia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Telangiectasia Retiniana/tratamento farmacológico , Telangiectasia Retiniana/enzimologia , Telangiectasia Retiniana/patologia , Transdução de Sinais , Telangiectasia Hemorrágica Hereditária/tratamento farmacológico , Telangiectasia Hemorrágica Hereditária/enzimologia , Telangiectasia Hemorrágica Hereditária/patologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
3.
J Natl Cancer Inst ; 107(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26296362

RESUMO

BACKGROUND: Pericytes are members of the tumor stroma; however, little is known about their origin, function, or interaction with other tumor components. Emerging evidence suggest that pericytes may regulate leukocyte transmigration. Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with powerful inhibitory effects on T-cell-mediated antitumor reactivity. METHODS: We generated subcutaneous tumors in a genetic mouse model of pericyte deficiency (the pdgfb (ret/ret) mouse) and littermate control mice (n = 6-25). Gene expression profiles from 253 breast cancer patients (stage I-III) were evaluated for clinic-pathological parameters and survival using Cox proportional hazard ratios (HRs) and 95% confidence intervals (CIs) based on a two-sided Wald test. RESULTS: We report that pericyte deficiency leads to increased transmigration of Gr1(+)/CD11b(+) cells in experimentally induced tumors. Pericyte deficiency produced defective tumor vasculature, resulting in a more hypoxic microenvironment promoting IL-6 upregulation in the malignant cells. Silencing IL-6 expression in tumor cells attenuated the observed differences in MDSC transmigration. Restoring the pericyte coverage in tumors abrogated the increased MDSC trafficking to pericyte-deficient tumors. MDSC accumulation in tumors led to increases in tumor growth and in circulating malignant cells. Finally, gene expression analysis from human breast cancer patients revealed increased expression of the human MDSC markers CD33 and S100A9 with concomitant decreased expression of pericyte genes and was associated with poor prognosis (HR = 1.88, 95% CI = 1.08 to 3.25, P = .03). CONCLUSIONS: Our data uncovers a novel paracrine interaction between tumor pericytes and inflammatory cells and delineates the cellular events resulting in the recruitment of MDSC to tumors. Furthermore, we propose for the first time a role for tumor pericytes in modulating the expression of immune mediators in malignant cells by promoting a hypoxic microenvironment.


Assuntos
Neoplasias da Mama/patologia , Antígeno CD11b/metabolismo , Movimento Celular , Células Mieloides , Neoplasias Experimentais/patologia , Pericitos , Receptores de Quimiocinas/metabolismo , Animais , Antígenos de Superfície/metabolismo , Neoplasias da Mama/metabolismo , Hipóxia Celular , Feminino , Citometria de Fluxo , Inativação Gênica , Humanos , Interleucina-6/genética , Camundongos , Neoplasias Experimentais/metabolismo , Tela Subcutânea , Suécia , Transcriptoma , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA