Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stroke ; 55(4): 1062-1074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436063

RESUMO

BACKGROUND: In preterm birth germinal matrix hemorrhages (GMHs) and the consequent posthemorrhagic hydrocephalus (PHH), the neuroepithelium/ependyma development is disrupted. This work is aimed to explore the possibilities of ependymal repair in GMH/PHH using a combination of neural stem cells, ependymal progenitors (EpPs), and mesenchymal stem cells. METHODS: GMH/PHH was induced in 4-day-old mice using collagenase, blood, or blood serum injections. PHH severity was characterized 2 weeks later using magnetic resonance, immunofluorescence, and protein expression quantification with mass spectrometry. Ependymal restoration and wall regeneration after stem cell treatments were tested in vivo and in an ex vivo experimental approach using ventricular walls from mice developing moderate and severe GMH/PHH. The effect of the GMH environment on EpP differentiation was tested in vitro. Two-tailed Student t or Wilcoxon-Mann-Whitney U test was used to find differences between the treated and nontreated groups. ANOVA and Kruskal-Wallis tests were used to compare >2 groups with post hoc Tukey and Dunn multiple comparison tests, respectively. RESULTS: PHH severity was correlated with the extension of GMH and ependymal disruption (means, 88.22% severe versus 19.4% moderate). GMH/PHH hindered the survival rates of the transplanted neural stem cells/EpPs. New multiciliated ependymal cells could be generated from transplanted neural stem cells and more efficiently from EpPs (15% mean increase). Blood and TNFα (tumor necrosis factor alpha) negatively affected ciliogenesis in cells committed to ependyma differentiation (expressing Foxj1 [forkhead box J1] transcription factor). Pretreatment with mesenchymal stem cells improved the survival rates of EpPs and ependymal differentiation while reducing the edematous (means, 18% to 0.5% decrease in severe edema) and inflammatory conditions in the explants. The effectiveness of this therapeutical strategy was corroborated in vivo (means, 29% to 0% in severe edema). CONCLUSIONS: In GMH/PHH, the ependyma can be restored and edema decreased from either neural stem cell or EpP transplantation in vitro and in vivo. Mesenchymal stem cell pretreatment improved the success of the ependymal restoration.


Assuntos
Doenças Fetais , Hidrocefalia , Células-Tronco Neurais , Nascimento Prematuro , Humanos , Feminino , Animais , Camundongos , Epêndima/patologia , Hidrocefalia/cirurgia , Hidrocefalia/metabolismo , Hemorragia Cerebral/terapia , Hemorragia Cerebral/metabolismo , Edema
2.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412549

RESUMO

Alzheimer's disease is the main cause of aging-associated dementia, for which there is no effective treatment. In this work, we reanalyze the information of a previous genome wide association study, using a new pipeline design to identify novel potential drugs. With this approach, ribonucleoside-diphosphate reductase gene (RRM2B) emerged as a candidate target and its inhibitor, 2', 2'-difluoro 2'deoxycytidine (gemcitabine), as a potential pharmaceutical drug against Alzheimer's disease. We functionally verified the effect of inhibiting the RRM2B homolog, rnr-2, in an Alzheimer's model of Caenorhabditis elegans, which accumulates human Aß1-42 peptide to an irreversible paralysis. RNA interference against rnr-2 and also treatment with 200 ng/ml of gemcitabine, showed an improvement of the phenotype. Gemcitabine treatment increased the intracellular ATP level 3.03 times, which may point to its mechanism of action. Gemcitabine has been extensively used in humans for cancer treatment but at higher concentrations. The 200 ng/ml concentration did not exert a significant effect over cell cycle, or affected cell viability when assayed in the microglia N13 cell line. Thus, the inhibitory drug of the RRM2B activity could be of potential use to treat Alzheimer's disease and particularly gemcitabine might be considered as a promising candidate to be repurposed for its treatment.


Assuntos
Doença de Alzheimer , Caenorhabditis elegans , Desoxicitidina , Modelos Animais de Doenças , Caenorhabditis elegans/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Animais , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Humanos , Gencitabina , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Interferência de RNA
3.
Pharmaceutics ; 14(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35336012

RESUMO

The development of nanoplatforms prepared to perform both multimodal imaging and combined therapies in a single entity is a fast-growing field. These systems are able to improve diagnostic accuracy and therapy success. Multicomponent Nanoparticles (MCNPs), composed of iron oxide and gold, offer new opportunities for Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) diagnosis, as well as combined therapies based on Magnetic Hyperthermia (MH) and Photothermal Therapy (PT). In this work, we describe a new seed-assisted method for the synthesis of Au@Fe Nanoparticles (NPs) with a flower-like structure. For biomedical purposes, Au@Fe NPs were functionalized with a PEGylated ligand, leading to high colloidal stability. Moreover, the as-obtained Au@Fe-PEG NPs exhibited excellent features as both MRI and CT Contrast Agents (CAs), with high r2 relaxivity (60.5 mM-1⋅s-1) and X-ray attenuation properties (8.8 HU mM-1⋅HU). In addition, these nanoflowers presented considerable energy-to-heat conversion under both Alternating Magnetic Fields (AMFs) (∆T ≈ 2.5 °C) and Near-Infrared (NIR) light (∆T ≈ 17 °C). Finally, Au@Fe-PEG NPs exhibited very low cytotoxicity, confirming their potential for theranostics applications.

4.
Biomater Sci ; 9(23): 7984-7995, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34710207

RESUMO

Passive tumor targeting via the enhanced permeability and retention (EPR) effect has long been considered the most effective mechanism for the accumulation of nanoparticles inside solid tumors. However, several studies have demonstrated that the EPR effect is largely dependent on the tumor type and location. Particularly complex is the situation in brain tumors, where the presence of the blood-brain tumor barrier (BBTB) adds an extra limiting factor in reaching the tumor interstitium. However, it remains unclear whether these restraints imposed by the BBTB prevent the EPR effect from acting as an efficient tumor targeting mechanism for metallic nanoparticles. In this work, we have studied the EPR effect of metallic magnetic nanoparticles (MMNPs) in a glioblastoma (GBM) model by parametric MRI. Our results showed that only MMNPs ≤50 nm could reach the tumor interstitium, whereas larger MMNPs were unable to cross the BBTB. Furthermore, even for MMNPs around 30-50 nm, the amount of them found within the tumor was scarce and restricted to the vicinity of large tumor vessels, indicating that the BBTB strongly limits the passive accumulation of metallic nanoparticles in brain tumors. Therefore, active targeting becomes the most reasonable strategy to target metallic nanoparticles to GBMs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Nanopartículas Metálicas , Nanopartículas , Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Humanos , Permeabilidade
5.
Inorg Chem ; 60(1): 152-160, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33201695

RESUMO

We describe a wet chemical method for the synthesis of uniform and well-dispersed dysprosium vanadate (DyVO4) and holmium vanadate (HoVO4) nanoparticles with an almost spherical shape and a mean size of ∼60 nm and their functionalization with poly(acrylic acid). The transverse magnetic relaxivity of both systems at 9.4 T is analyzed on the basis of magnetic susceptibility and magnetization measurements in order to evaluate their potential for application as high-field MRI contrast agents. In addition, the X-ray attenuation properties of these systems are also studied to determine their capabilities as computed tomography contrast agent. Finally, the colloidal stability under physiological pH conditions and the cytotoxicity of the functionalized NPs are also addressed to assess their suitability for bioimaging applications.


Assuntos
Meios de Contraste/química , Disprósio/química , Hólmio/química , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Vanadatos/química , Resinas Acrílicas/química , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/farmacologia , Disprósio/farmacologia , Hólmio/farmacologia , Humanos , Campos Magnéticos , Nanopartículas/química , Células PC-3 , Tamanho da Partícula , Vanadatos/farmacologia
6.
Stem Cell Res Ther ; 11(1): 121, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183876

RESUMO

BACKGROUND: In obstructive congenital hydrocephalus, cerebrospinal fluid accumulation is associated with high intracranial pressure and the presence of periventricular edema, ischemia/hypoxia, damage of the white matter, and glial reactions in the neocortex. The viability and short time effects of a therapy based on bone marrow-derived mesenchymal stem cells (BM-MSC) have been evaluated in such pathological conditions in the hyh mouse model. METHODS: BM-MSC obtained from mice expressing fluorescent mRFP1 protein were injected into the lateral ventricle of hydrocephalic hyh mice at the moment they present a very severe form of the disease. The effect of transplantation in the neocortex was compared with hydrocephalic hyh mice injected with the vehicle and non-hydrocephalic littermates. Neural cell populations and the possibility of transdifferentiation were analyzed. The possibility of a tissue recovering was investigated using 1H High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (1H HR-MAS NMR) spectroscopy, thus allowing the detection of metabolites/osmolytes related with hydrocephalus severity and outcome in the neocortex. An in vitro assay to simulate the periventricular astrocyte reaction conditions was performed using BM-MSC under high TNFα level condition. The secretome in the culture medium was analyzed in this assay. RESULTS: Four days after transplantation, BM-MSC were found undifferentiated and scattered into the astrocyte reaction present in the damaged neocortex white matter. Tissue rejection to the integrated BM-MSC was not detected 4 days after transplantation. Hyh mice transplanted with BM-MSC showed a reduction in the apoptosis in the periventricular neocortex walls, suggesting a neuroprotector effect of the BM-MSC in these conditions. A decrease in the levels of metabolites/osmolytes in the neocortex, such as taurine and neuroexcytotoxic glutamate, also indicated a tissue recovering. Under high TNFα level condition in vitro, BM-MSC showed an upregulation of cytokine and protein secretion that may explain homing, immunomodulation, and vascular permeability, and therefore the tissue recovering. CONCLUSIONS: BM-MSC treatment in severe congenital hydrocephalus is viable and leads to the recovery of the severe neurodegenerative conditions in the neocortex. NMR spectroscopy allows to follow-up the effects of stem cell therapy in hydrocephalus.


Assuntos
Hidrocefalia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Neocórtex , Animais , Medula Óssea , Células da Medula Óssea , Hidrocefalia/terapia , Camundongos
7.
Bioconjug Chem ; 29(5): 1785-1791, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29718659

RESUMO

The efficiency of maghemite nanoparticles for the treatment of anemia was sensibly higher when nanoparticles were incorporated onto the probiotic bacterium Lactobacillus fermentum (MNP-bacteria) than when administrated as uncoated nanoparticles (MNP). Plasma iron and hemoglobin, intestine expression of divalent metal transporter 1 (DMT1) and duodenal Cytochrome b (DcytB), as well as hepatic expression of the hormone hepcidin were fully restored to healthy levels after administration of MNP-bacteria but not of MNP. A magnetic study on biodistribution and biodegradation showed accumulation of maghemite nanoparticles in intestine lumen when MNP-bacteria were administrated. In contrast, MNP barely reached intestine. In vivo MRI studies suggested the internalization of MNP-bacteria into enterocytes, which did not occur with MNP. Transmission electronic microscopy confirmed this internalization. The collective analysis of results point out that L. fermentum is an excellent carrier to overcome the stomach medium and drive maghemite nanoparticles to intestine, where iron absorption occurs. Due the probiotic ability to adhere to the gut wall, MNP-bacteria internalize into the enterocyte, where maghemite nanoparticles are delivered, providing an adequate iron level into enterocyte. This paper advances a new route for effective iron absorption in the treatment of anemia.


Assuntos
Anemia/terapia , Compostos Férricos/uso terapêutico , Lactobacillus , Nanopartículas/uso terapêutico , Probióticos/uso terapêutico , Anemia/sangue , Anemia/metabolismo , Animais , Enterócitos/metabolismo , Compostos Férricos/administração & dosagem , Compostos Férricos/farmacocinética , Células HT29 , Hemoglobinas/análise , Hepcidinas/análise , Humanos , Ferro/sangue , Lactobacillus/metabolismo , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/análise , Probióticos/administração & dosagem , Probióticos/farmacocinética , Ratos Wistar , Distribuição Tecidual
8.
Bioconjug Chem ; 28(11): 2707-2714, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28945361

RESUMO

We report the fabrication of aqueous multimodal imaging nanocomposites based on superparamagnetic nanoparticles (MNPs) and two different sizes of photoluminescent upconverting nanoparticles (UCNPs). The controlled and simultaneous incorporation of both types of nanoparticles (NPs) was obtained by controlling the solvent composition and the addition rate of the destabilizing solvent. The magnetic properties of the MNPs remained unaltered after their encapsulation into the polymeric beads as shown by the T2 relaxivity measurements. The UCNPs maintain photoluminescent properties even when embedded with the MNPs into the polymer bead. Moreover, the light emitted by the magnetic and upconverting nanobeads (MUCNBs) under NIR excitation (λexc = 980 nm) was clearly observed through different thicknesses of agarose gel or through a mouse skin layer. The comparison with magnetic and luminescent nanobeads based on red-emitting quantum dots (QDs) demonstrated that while the QD-based beads show significant autofluorescence background from the skin, the signal obtained by the MUCNBs allows a decrease in this background. In summary, these results indicate that MUCNBs are good magnetic and optical probes for in vivo multimodal imaging sensors.


Assuntos
Substâncias Luminescentes/química , Nanopartículas de Magnetita/química , Nanopartículas/química , Imagem Óptica/métodos , Animais , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Imagem Multimodal , Pontos Quânticos/química , Pele/diagnóstico por imagem
9.
MAGMA ; 28(2): 119-26, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24916487

RESUMO

OBJECTIVE: We sought to evaluate the effects of acute hyperglycemia induced by intraperitoneal injection of glucose (2.7 g/kg) on vascular delivery to GL261 mouse gliomas kept at moderate hypothermia (~30 °C). MATERIALS AND METHODS: Seven GL261 glioma-bearing mice were studied by T1-weighted DCE MRI before and after an injection of glucose (n = 4) or saline (n = 3). Maximum relative contrast enhancement (RCE) and initial area under the enhancement curve (IAUC) were determined in each pixel. RESULTS: The mean tumor parameter values showed no significant changes after injecting either saline (RCE -5.9 ± 5.0 %; IAUC -3.7 ± 3.6 %) or glucose (RCE -1.6 ± 9.0 %; IAUC +0.6 ± 6.4 %). Pixel-by-pixel analysis revealed small post-injection changes in RCE and IAUC between the glucose and saline groups, all within 13 % range of their baseline values. CONCLUSION: Perturbing the metabolism of GL261 tumors kept at moderate hypothermia with hyperglycemia did not induce significant changes in the permeability/perfusion of these tumors. This is relevant for future studies with this model since regional differences in glucose accumulation could thus reflect basal heterogeneities in vasculature and/or metabolism of GL261 tumors.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Imagem de Difusão por Ressonância Magnética/métodos , Hiperglicemia/patologia , Hipotermia Induzida/métodos , Doença Aguda , Animais , Neoplasias Encefálicas/complicações , Linhagem Celular Tumoral , Feminino , Glioma , Hiperglicemia/complicações , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento , Carga Tumoral
10.
Front Chem ; 2: 112, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25566530

RESUMO

Medical imaging technologies have undergone explosive growth over the past few decades and now play a central role in clinical oncology. But the truly transformative power of imaging in the clinical management of cancer patients lies ahead. Today, imaging is at a crossroads, with molecularly targeted imaging agents expected to broadly expand the capabilities of conventional anatomical imaging methods. Molecular imaging will allow clinicians to not only see where a tumor is located in the body, but also to visualize the expression and activity of specific molecules (e.g., proteases and protein kinases) and biological processes (e.g., apoptosis, angiogenesis, and metastasis) that influence tumor behavior and/or response to therapy. Breast cancer, the most common cancer among women and a research area where our group is actively involved, is a very heterogeneous disease with diverse patterns of development and response to treatment. Hence, molecular imaging is expected to have a major impact on this type of cancer, leading to important improvements in diagnosis, individualized treatment, and drug development, as well as our understanding of how breast cancer arises.

11.
NMR Biomed ; 24(10): 1380-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21604311

RESUMO

The extracellular pH (pH(e) ) of solid tumors is acidic, and there is evidence that an acidic pH(e) is related to invasiveness. Herein, we describe an MRI single-infusion method to measure pH(e) in gliomas using a cocktail of contrast agents (CAs). The cocktail contained gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminophosphonate (GdDOTA-4AmP) and dysprosium-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetrakis(methylenephosphonic acid) (DyDOTP), whose effects on relaxation are sensitive and insensitive to pH, respectively. The Gd-CA dominated the spin-lattice relaxivity ΔR(1) , whereas the Dy-CA dominated the spin-spin relaxivity ΔR(2)*. The ΔR(2)* effects were used to determine the pixel-wise concentration of [Dy] which, in turn, was used to calculate a value for [Gd] concentration. This value was used to convert ΔR(1) values to the molar relaxivity Δr(1) and, hence, pH(e) maps. The development of the method involved in vivo calibration and measurements in a rat brain glioma model. The calibration phase consisted of determining a quantitative relationship between ΔR(1) and ΔR(2)* induced by the two pH-independent CAs, gadolinium-diethylenetriaminepentaacetic acid (GdDTPA) and DyDOTP, using echo planar spectroscopic imaging (EPSI) and T(1) -weighted images. The intensities and linewidths of the water peaks in EPSI images were affected by CA and were used to follow the pharmacokinetics. These data showed a linear relationship between inner- and outer-sphere relaxation rate constants that were used for CA concentration determination. Nonlinearity in the slope of the relationship was observed and ascribed to variations in vascular permeability. In the pH(e) measurement phase, GdDOTA-4AmP was infused instead of GdDTPA, and relaxivities were obtained through the combination of interleaved T(1) -weighted images (R(1) ) and EPSI for ΔR(2)*. The resulting r(1) values yielded pH(e) maps with high spatial resolution.


Assuntos
Meios de Contraste/administração & dosagem , Meios de Contraste/farmacologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Imageamento por Ressonância Magnética/métodos , Animais , Calibragem , Feminino , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Injeções , Ratos , Ratos Wistar , Fatores de Tempo
12.
NMR Biomed ; 22(6): 629-37, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19322812

RESUMO

We investigate the profile of choline metabolites and the expression of the genes of the Kennedy pathway in biopsies of human gliomas (n = 23) using (1)H High Resolution Magic Angle Spinning (HR-MAS, 11.7 Tesla, 277 K, 4000 Hz) and individual genetic assays. (1)H HR-MAS spectra allowed the resolution and relative quantification by the LCModel of the resonances from choline (Cho), phosphocholine (PC) and glycerophosphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo (1)H NMR spectroscopy. All glioma biopsies depicted a prominent tCho peak. However, the relative contributions of Cho, PC, and GPC to tCho were different for low and high grade gliomas. Whereas GPC is the main component in low grade gliomas, the high grade gliomas show a dominant contribution of PC. This circumstance allowed the discrimination of high and low grade gliomas by (1)H HR-MAS, a result that could not be obtained using the tCho/Cr ratio commonly used by in vivo (1)H NMR spectroscopy. The expression of the genes involved in choline metabolism has been investigated in the same biopsies. High grade gliomas depict an upregulation of the beta gene of choline kinase and phospholipase C, as well as a downregulation of the cytidyltransferase B gene, the balance of these being consistent with the accumulation of PC. In the low grade gliomas, phospholipase A(1) and lysophospholipase are upregulated and phospholipase D is downregulated, supporting the accumulation of GPC. The present findings offer a promising procedure that will potentially help to accurately grade glioma tumors using (1)H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low grade gliomas.


Assuntos
Astrocitoma/genética , Astrocitoma/patologia , Biópsia , Espectroscopia de Ressonância Magnética/métodos , Astrocitoma/diagnóstico , Astrocitoma/metabolismo , Colina/química , Colina/metabolismo , Glicerilfosforilcolina/química , Glicerilfosforilcolina/metabolismo , Humanos
13.
NMR Biomed ; 21(8): 799-808, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18470959

RESUMO

In order to investigate the properties of water motion within and around brain tumors as a function of tumor growth, longitudinal diffusion tensor imaging (DTI) was carried out in a rat brain glioma (C6) model. As tumors grew in size, significant anisotropy of water diffusion was seen both within and around the tumor. The tissue water surrounding the tumor exhibited high planar anisotropy, as opposed to the linear anisotropy normally seen in white matter, indicating that cells were experiencing stress in a direction normal to the tumor border. When tumors were sufficiently large, significant anisotropy was also seen within the tumor because of longer-range organization of cancer cells within the tumor borders. These findings have important implications for diffusion-weighted MRI experiments examining tumor growth and response to therapy.


Assuntos
Neoplasias Encefálicas/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Modelos Animais de Doenças , Glioma/diagnóstico , Interpretação de Imagem Assistida por Computador/métodos , Animais , Feminino , Humanos , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Neurochem Int ; 48(6-7): 523-30, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16530294

RESUMO

We provide an integrative interpretation of neuroglial metabolic coupling including the presence of subcellular compartmentation of pyruvate and monocarboxylate recycling through the plasma membrane of both neurons and glial cells. The subcellular compartmentation of pyruvate allows neurons and astrocytes to select between glucose and lactate as alternative substrates, depending on their relative extracellular concentration and the operation of a redox switch. This mechanism is based on the inhibition of glycolysis at the level of glyceraldehyde 3-phosphate dehydrogenase by NAD(+) limitation, under sufficiently reduced cytosolic NAD(+)/NADH redox conditions. Lactate and pyruvate recycling through the plasma membrane allows the return to the extracellular medium of cytosolic monocarboxylates enabling their transcellular, reversible, exchange between neurons and astrocytes. Together, intracellular pyruvate compartmentation and monocarboxylate recycling result in an effective transcellular coupling between the cytosolic NAD(+)/NADH redox states of both neurons and glial cells. Following glutamatergic neurotransmission, increased glutamate uptake by the astrocytes is proposed to augment glycolysis and tricarboxylic acid cycle activity, balancing to a reduced cytosolic NAD(+)/NADH in the glia. Reducing equivalents are transferred then to the neuron resulting in a reduced neuronal NAD(+)/NADH redox state. This may eventually switch off neuronal glycolysis, favoring the oxidation of extracellular lactate in the lactate dehydrogenase (LDH) equilibrium and in the neuronal tricarboxylic acid cycles. Finally, pyruvate derived from neuronal lactate oxidation, may return to the extracellular space and to the astrocyte, restoring the basal redox state and beginning a new loop of the lactate/pyruvate transcellular coupling cycle. Transcellular redox coupling operates through the plasma membrane transporters of monocarboxylates, similarly to the intracellular redox shuttles coupling the cytosolic and mitochondrial redox states through the transporters of the inner mitochondrial membrane. Finally, transcellular redox coupling mechanisms may couple glycolytic and oxidative zones in other heterogeneous tissues including muscle and tumors.


Assuntos
Ácido Láctico/metabolismo , Neuroglia/metabolismo , Ácido Pirúvico/metabolismo , Animais , Astrócitos/metabolismo , Transporte Biológico Ativo , Membrana Celular/metabolismo , Glucose/metabolismo , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Glicólise , Humanos , L-Lactato Desidrogenase/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , NAD/metabolismo , Neurônios/metabolismo , Oxirredução
15.
Magn Reson Med ; 55(2): 309-15, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16402385

RESUMO

Previous studies using MR spectroscopy have shown that the extracellular pH (pH(e)) of tumors is acidic compared to normal tissues. This has a number of important sequelae that favor the emergence of more aggressive and therapy-resistant tumors. New MRI methods based on pH-sensitive T1 relaxivity are an attractive alternative to previous spectroscopic methods, as they allow improvements in spatial and temporal resolution. Recently, pH-dependent GdDOTA-4AmP5- and a pH-independent analog, GdDOTP5-, were used to image renal pH in mice. The current study has used a similar approach to image pH(e) in rat gliomas. Significant differences were observed compared to the renal study. First, the relaxivity of GdDOTP5- was found to be affected by the higher extracellular protein content of tumors. Second, the pixel-by-pixel analysis of the GdDOTP5- and GdDOTA-4AmP5- pharmacokinetics showed significant dispersion, likely due to the temporal fluctuations in tumor perfusion. However, there was a robust correlation between the maximal enhancements produced by the two boluses. Therefore, to account for the local time-courses differences, pH(e) maps were calculated at the time of maximal enhancement in each pixel. Finally, the comparison of the pH(e) and the time to maximal intensity maps revealed an inverse relationship between pH(e) and tumor perfusion.


Assuntos
Glioma/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Análise de Variância , Animais , Meios de Contraste/farmacocinética , Compostos Heterocíclicos/farmacocinética , Concentração de Íons de Hidrogênio , Compostos Organometálicos/farmacocinética , Ratos , Reprodutibilidade dos Testes , Células Tumorais Cultivadas
16.
IEEE Eng Med Biol Mag ; 23(5): 57-64, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15565800

RESUMO

Acid-base balance is altered in a variety of common pathologies, including COPD, ischemia, renal failure, and cancer. Because of robust cellular pH homeostatic mechanisms, most of the pathological alterations in pH are expressed as changes in the extracellular, systemic pH. There are data to indicate that altered pH is not simply an epiphenomenon of metabolic or physiologic imbalance but that chronic pH alterations can have important sequelae. MRSI and MRI measurements indicate that pH gradients of up to 1.0 pH unit can exit within 1-cm distance. Although measurement of blood pH can indicate systemic problems, it cannot pinpoint the lesion or quantitatively assess the magnitude of excursion from normal pHe. Hence, there is a need to develop pHe measurement methods with high spatiotemporal resolution. The two major approaches being investigated include magnetization transfer methods and relaxation methods. pH-dependent MT effects can observed with endogenous signals or exogenously applied CEST agents. While endogenous signals have the advantage of being fully noninvasive and relatively straightforward to apply, they lack a full biophysical characterization and dynamic range that might be afforded by future CEST agents. pH-dependent relaxivity also requires the injection or infusion of exogenous contrast reagents. In both MT and relaxographic approaches, the magnitude of the effect, and, thus, the ability to quantify pHe, depends on a spatially and temporally varying concentration of the CR. A number of approaches have been proposed to solve this problem and, once it is solved, pH imaging methods will be applicable to human clinical pathologies.


Assuntos
Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Neoplasias/patologia , Equilíbrio Ácido-Base/fisiologia , Animais , Meios de Contraste , Flúor , Compostos Heterocíclicos com 1 Anel , Humanos , Neoplasias/química , Compostos Organometálicos , Isótopos de Fósforo
17.
Neurochem Int ; 45(2-3): 297-303, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15145545

RESUMO

We review briefly 13C NMR studies of cerebral glucose metabolism with an emphasis on the roles of glial energetics and the glutamine cycle. Mathematical modeling analysis of in vivo 13C turnover experiments from the C4 carbons of glutamate and glutamine are consistent with: (i) the glutamine cycle being the major cerebral metabolic route supporting glutamatergic neurotransmission, (ii) glial glutamine synthesis being stoichiometrically coupled to glycolytic ATP production, (iii) glutamine serving as the main precursor of neurotransmitter glutamate and (iv) glutamatergic neurotransmission being supported by lactate oxidation in the neurons in a process accounting for 60-80% of the energy derived from glucose catabolism. However, more recent experimental approaches using inhibitors of the glial tricarboxylic acid (TCA) cycle (trifluoroacetic acid, TFA) or of glutamine synthase (methionine sulfoximine, MSO) reveal that a considerable portion of the energy required to support glutamine synthesis is derived from the oxidative metabolism of glucose in the astroglia and that a significant amount of the neurotransmitter glutamate is produced from neuronal glucose or lactate rather than from glial glutamine. Moreover, a redox switch has been proposed that allows the neurons to use either glucose or lactate as substrates for oxidation, depending on the relative availability of these fuels under resting or activation conditions, respectively. Together, these results suggest that the coupling mechanisms between neuronal and glial metabolism are more complex than initially envisioned.


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Isótopos de Carbono , Glicólise , Humanos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA