Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791253

RESUMO

The application of metal-based nanoparticles (mNPs) in cancer therapy and diagnostics (theranostics) has been a hot research topic since the early days of nanotechnology, becoming even more relevant in recent years. However, the clinical translation of this technology has been notably poor, with one of the main reasons being a lack of understanding of the disease and conceptual errors in the design of mNPs. Strikingly, throughout the reported studies to date on in vivo experiments, the concepts of "tumor targeting" and "tumor cell targeting" are often intertwined, particularly in the context of active targeting. These misconceptions may lead to design flaws, resulting in failed theranostic strategies. In the context of mNPs, tumor targeting can be described as the process by which mNPs reach the tumor mass (as a tissue), while tumor cell targeting refers to the specific interaction of mNPs with tumor cells once they have reached the tumor tissue. In this review, we conduct a critical analysis of key challenges that must be addressed for the successful targeting of either tumor tissue or cancer cells within the tumor tissue. Additionally, we explore essential features necessary for the smart design of theranostic mNPs, where 'smart design' refers to the process involving advanced consideration of the physicochemical features of the mNPs, targeting motifs, and physiological barriers that must be overcome for successful tumor targeting and/or tumor cell targeting.


Assuntos
Nanopartículas Metálicas , Neoplasias , Nanomedicina Teranóstica , Humanos , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Neoplasias/patologia , Nanomedicina Teranóstica/métodos , Animais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos
2.
Adv Healthc Mater ; 13(12): e2304044, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38303644

RESUMO

Iron Oxide Nanoparticles (IONPs) hold the potential to exert significant influence on fighting cancer through their theranostics capabilities as contrast agents (CAs) for magnetic resonance imaging (MRI) and as mediators for magnetic hyperthermia (MH). In addition, these capabilities can be improved by doping IONPs with other elements. In this work, the synthesis and characterization of single-core and alloy ZnFe novel magnetic nanoparticles (MNPs), with improved magnetic properties and more efficient magnetic-to-heat conversion, are reported. Remarkably, the results challenge classical nucleation and growth theories, which cannot fully predict the final size/shape of these nanoparticles and, consequently, their magnetic properties, implying the need for further studies to better understand the nanomagnetism phenomenon. On the other hand, leveraging the enhanced properties of these new NPs, successful tumor therapy by MH is achieved following their intravenous administration and tumor accumulation via the enhanced permeability and retention (EPR) effect. Notably, these results are obtained using a single low dose of MNPs and a single exposure to clinically suitable alternating magnetic fields (AMF). Therefore, as far as the authors are aware, for the first time, the successful application of intravenously administered MNPs for MRI-tracked MH tumor therapy in passively targeted tumor xenografts using clinically suitable conditions is demonstrated.


Assuntos
Hipertermia Induzida , Imageamento por Ressonância Magnética , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Zinco/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Meios de Contraste/química , Nanopartículas de Magnetita/química , Ferro/química
3.
J Mater Chem B ; 11(46): 11110-11120, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37947078

RESUMO

Superparamagnetic iron oxide nanoparticles have hogged the limelight in different fields of nanotechnology. Surprisingly, notwithstanding the prominent role played as agents in magnetic hyperthermia treatments, the effects of nanoparticle size and shape on the magnetic hyperthermia performance have not been entirely elucidated yet. Here, spherical or cubical magnetic nanoparticles synthesized by a thermal decomposition method with the same magnetic and hyperthermia properties are evaluated. Interestingly, spherical nanoparticles displayed significantly higher magnetic relaxivity than cubic nanoparticles; however, comparable differences were not observed in specific absorption rate (SAR), pointing out the need for additional research to better understand the connection between these two parameters. Additionally, the as-synthetized spherical nanoparticles showed negligible cytotoxicity and, therefore, were tested in vivo in tumor-bearing mice. Following intratumoral administration of these spherical nanoparticles and a single exposure to alternating magnetic fields (AMF) closely mimicking clinical conditions, a significant delay in tumor growth was observed. Although further in vivo experiments are warranted to optimize the magnetic hyperthermia conditions, our findings support the great potential of these nanoparticles as magnetic hyperthermia mediators for tumor therapy.


Assuntos
Hipertermia Induzida , Neoplasias , Camundongos , Animais , Hipertermia Induzida/métodos , Campos Magnéticos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética
4.
Nanomedicine ; 52: 102695, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37394106

RESUMO

Chitosan-functionalized magnetite/poly(ε-caprolactone) nanoparticles were formulated by interfacial polymer disposition plus coacervation, and loaded with gemcitabine. That (core/shell)/shell nanostructure was confirmed by electron microscopy, elemental analysis, electrophoretic, and Fourier transform infrared characterizations. A short-term stability study proved the protection against particle aggregation provided by the chitosan shell. Superparamagnetic properties of the nanoparticles were characterized in vitro, while the definition of the longitudinal and transverse relaxivities was an initial indication of their capacity as T2 contrast agents. Safety of the particles was demonstrated in vitro on HFF-1 human fibroblasts, and ex vivo on SCID mice. The nanoparticles demonstrated in vitro pH- and heat-responsive gemcitabine release capabilities. In vivo magnetic resonance imaging studies and Prussian blue visualization of iron deposits in tissue samples defined the improvement in nanoparticle targeting into the tumor when using a magnetic field. This tri-stimuli (magnetite/poly(ε-caprolactone))/chitosan nanostructure could find theranostic applications (biomedical imaging & chemotherapy) against tumors.


Assuntos
Quitosana , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Camundongos , Animais , Humanos , Óxido Ferroso-Férrico/uso terapêutico , Quitosana/uso terapêutico , Medicina de Precisão , Camundongos SCID , Nanopartículas de Magnetita/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Gencitabina , Imageamento por Ressonância Magnética/métodos
5.
Eur J Med Chem ; 243: 114730, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36088758

RESUMO

The stereoselective addition of ethyl acetate enolate to the C═N bond of N-tert-butylsulfinylimines has been investigated in depth. A significant effect of the LHMDS amount and the N-sulfinylimine nature on the stereoselectivity of the process was observed. Conditions were found where sulfinylimines of differently substituted salicylaldehydes derivatives, ethyl acetate, and LHMDS afforded the corresponding addition products as a single diastereomer in good yields. The developed protocol was successfully applied to the first stereoselective synthesis of differently substituted 4-amino-3,4-dihydrocoumarin derivatives. Computational models confirmed the prominent role of the ortho aryl substituent in the stereoselectivity of the process. A significant and selective cytotoxic activity against Glioblastoma Multiforme (GBM) cancer line has been determined for the noncyclic hydroxy ester derivative.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Estereoisomerismo , Ésteres/farmacologia , Ésteres/química , Antineoplásicos/farmacologia
6.
Soft Matter ; 17(46): 10580, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806102

RESUMO

Correction for 'Clickable iron oxide NPs based on catechol derived ligands: synthesis and characterization' by Esther Pozo-Torres et al., Soft Matter, 2020, 16, 3257-3266, DOI: 10.1039/C9SM02512J.

7.
J Mater Chem B ; 9(24): 4963-4980, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34114575

RESUMO

(Maghemite/poly(d,l-lactide-co-glycolide))/chitosan (core/shell)/shell nanoparticles have been prepared reproducibly by nanoprecipitation solvent evaporation plus coacervation (production performance ≈ 45%, average size ≈ 325 nm). Transmission electron microscopy, energy dispersive X-ray spectroscopy, electrophoretic determinations, and X-ray diffraction patterns demonstrated the satisfactory embedment of iron oxide nanocores within the solid polymer matrix and the formation of an external shell of chitosan in the nanostructure. The adequate magnetic responsiveness of the nanocomposites was characterized in vitro by hysteresis cycle determinations and by visualization of the nanosystem under the influence of a 0.4 T permanent magnet. Safety and biocompatibility of the (core/shell)/shell particles were based on in vitro haemocompatibility studies and cytotoxicity tests against HFF-1 human foreskin fibroblasts and on ex vivo toxicity assessments on tissue samples from Balb/c mice. Transversal relaxivities, determined in vitro at a low magnetic field of 1.44 T, demonstrated their capability as T2 contrast agents for magnetic resonance imaging, being comparable to that of some iron oxide-based contrast agents. Heating properties were evaluated in a high frequency alternating electromagnetic gradient: a constant maximum temperature of ≈46 °C was generated within ≈50 min, while antitumour hyperthermia tests on T-84 colonic adenocarcinoma cells proved the relevant decrease in cell viability (to ≈ 39%) when treated with the nanosystem under the influence of that electromagnetic field. Finally, in vivo magnetic resonance imaging studies and ex vivo histology determinations of iron deposits postulated the efficacy of chitosan to provide long-circulating capabilities to the nanocomposites, retarding nanoparticle recognition by the mononuclear phagocyte system. To our knowledge, this is the first study describing such a type of biocompatible and long-circulating nanoplatform with promising theranostic applications (biomedical imaging and hyperthermia) against cancer.


Assuntos
Quitosana/química , Engenharia , Hipertermia Induzida , Nanopartículas de Magnetita/química , Nanocompostos/química , Neoplasias/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanocompostos/uso terapêutico
8.
Pharmaceutics ; 13(3)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804636

RESUMO

In this study, we report the synthesis of gold-coated iron oxide nanoparticles capped with polyvinylpyrrolidone (Fe@Au NPs). The as-synthesized nanoparticles (NPs) exhibited good stability in aqueous media and excellent features as contrast agents (CA) for both magnetic resonance imaging (MRI) and X-ray computed tomography (CT). Additionally, due to the presence of the local surface plasmon resonances of gold, the NPs showed exploitable "light-to-heat" conversion ability in the near-infrared (NIR) region, a key attribute for effective photothermal therapies (PTT). In vitro experiments revealed biocompatibility as well as excellent efficiency in killing glioblastoma cells via PTT. The in vivo nontoxicity of the NPs was demonstrated using zebrafish embryos as an intermediate step between cells and rodent models. To warrant that an effective therapeutic dose was achieved inside the tumor, both intratumoral and intravenous routes were screened in rodent models by MRI and CT. The pharmacokinetics and biodistribution confirmed the multimodal imaging CA capabilities of the Fe@AuNPs and revealed constraints of the intravenous route for tumor targeting, dictating intratumoral administration for therapeutic applications. Finally, Fe@Au NPs were successfully used for an in vivo proof of concept of imaging-guided focused PTT against glioblastoma multiforme in a mouse model.

9.
Top Curr Chem (Cham) ; 378(3): 40, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382832

RESUMO

Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to conventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have been extensively investigated as CAs due to their high biocompatibility and excellent magnetic properties. Furthermore, the ease of functionalization of their surfaces with different types of ligands (antibodies, peptides, sugars, etc.) opens up the possibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial growth factor receptor antibodies, short peptides, like RGD, or aptamers, among others, have been proposed for the diagnosis of various types of cancer, including breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, different types of IONPs have been developed for other applications, such as the detection of brain inflammation or the early diagnosis of thrombosis. This review addresses key aspects in the development of IONPs for MRI applications, namely, synthesis of the inorganic core, functionalization processes to make IONPs biocompatible and also to target them to specific tissues or cells, and finally in vivo studies in animal models, with special emphasis on tumor models.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Animais , Humanos
10.
J Colloid Interface Sci ; 573: 278-286, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283416

RESUMO

The combination of different bioimaging techniques, mainly in the field of oncology, allows circumventing the defects associated with the individual imaging modalities, thus providing a more reliable diagnosis. The development of multimodal endogenous probes that are simultaneously suitable for various imaging modalities, such as magnetic resonance imaging (MRI), X-ray computed tomography (CT) and luminescent imaging (LI) is, therefore, highly recommended. Such probes should operate in the conditions imposed by the newest imaging equipment, such as MRI operating at high magnetic fields and dual-energy CT. They should show, as well, high photoluminescence emission intensity for their use in optical imaging and present good biocompatibility. In this context, we have designed a single nanoprobe, based on a core-shell architecture, composed of a luminescent Eu3+:Ba0.3Lu0.7F2.7 core surrounded by an external HoF3 shell that confers the probe with very high magnetic transverse relaxivity at high field. An intermediate, optically inert Ba0.3Lu0.7F2.7 layer was interposed between the core and the shell to hinder Eu3+-Ho3+ cross-relaxation and avoid luminescence quenching. The presence of Ba and Lu, with different K-edges, allows for good X-ray attenuation at high and low voltages. The core-shell nanoparticles synthesized are good potential candidates as trimodal bioprobes for MRI at high field, dual-energy CT and luminescent imaging.

11.
Soft Matter ; 16(13): 3257-3266, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163076

RESUMO

Clickable magnetic nanoparticles have attracted great attention as potential nanoplatforms for biomedical applications because of the high functionalization efficiency of their surfaces with biomolecules, which facilitates their bio-compatibilization. However, the design and synthesis of clickable NPs is still challenging because of the complexity of the chemistry on the magnetic NP surface, thus robust methods that improve the ligand synthesis and the transfer of magnetic NPs in physiological media being in high-demand. In this work, we developed a versatile and enhanced synthetic route to fabricate potentially clickable IONPs of interest in nanomedicine. Catechol anchor ligands with different stereo-electronic features were synthetized from a hetero bi-functional PEG spacer backbone. The resulting catechol ligands transferred in good yields and high stability to magnetic NPs by an improved energetic ligand exchange method that combines sonication and high temperature. The azido functionalized IONPs exhibited excellent characteristics as T2 MRI contrast agents with low cytotoxicity, making these clickable magnetic NPs promising precursors for nanomedicines.


Assuntos
Catecóis/química , Química Click , Compostos Férricos/química , Nanopartículas Metálicas/química , Catecóis/síntese química , Ligantes
12.
Nanomaterials (Basel) ; 9(2)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781838

RESUMO

Progress in the field of biocompatible SERS nanoparticles has promising prospects for biomedical applications. In this work, we have developed a biocompatible Raman probe by combining anisotropic silver nanoparticles with the dye rhodamine 6G followed by subsequent coating with bovine serum albumin. This nanosystem presents strong SERS capabilities in the near infrared (NIR) with a very high (2.7 × 107) analytical enhancement factor. Theoretical calculations reveal the effects of the electromagnetic and chemical mechanisms in the observed SERS effect for this nanosystem. Finite element method (FEM) calculations showed a considerable near field enhancement in NIR. Using density functional quantum chemical calculations, the chemical enhancement mechanism of rhodamine 6G by interaction with the nanoparticles was probed, allowing us to calculate spectra that closely reproduce the experimental results. The nanosystem was tested in cell culture experiments, showing cell internalization and also proving to be completely biocompatible, as no cell death was observed. Using a NIR laser, SERS signals could be detected even from inside cells, proving the applicability of this nanosystem as a biocompatible SERS probe.

13.
J Proteome Res ; 17(9): 2953-2962, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30129764

RESUMO

We used 1H, 13C HRMAS and genomic analysis to investigate regionally the transition from oxidative to glycolytic phenotype and its relationship with altered gene expression in adjacent biopsies through the brain of rats bearing C6 gliomas. Tumor-bearing animals were anesthetized and infused with a solution of [1-13C]-glucose, and small adjacent biopsies were obtained spanning transversally from the contralateral hemisphere (regions I and II), the right and left peritumoral areas (regions III and V, respectively), and the tumor core (region IV). These biopsies were analyzed by 1H, 13C HRMAS and by quantitative gene expression techniques. Glycolytic metabolism, as reflected by the [3-13C]-lactate content, increased clearly from regions I to IV, recovering partially to physiological levels in region V. In contrast, oxidative metabolism, as reflected by the [4-13C]-glutamate labeling, decreased in regions I-IV, recovering partially in region V. This metabolic shift from normal to malignant metabolic phenotype paralleled changes in the expression of HIF1α, HIF2α, HIF3α genes, downstream transporters, and regulatory glycolytic, oxidative, and anaplerotic genes in the same regions. Together, our results indicate that genetic and metabolic alterations occurring in the brain of rats bearing C6 gliomas colocalize in situ and the profile of genetic alterations in every region can be inferred from the metabolomic profiles observed in situ by multinuclear HRMAS.


Assuntos
Neoplasias Encefálicas/genética , Reprogramação Celular , Glioma/genética , Glicólise/genética , Fosforilação Oxidativa , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biópsia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Isótopos de Carbono , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/metabolismo , Núcleo Caudado/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glioma/diagnóstico por imagem , Glioma/metabolismo , Glioma/patologia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Transplante de Neoplasias , Ratos , Ratos Wistar , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transplante Heterólogo
14.
Biomacromolecules ; 18(5): 1617-1623, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28368576

RESUMO

pH-responsive nanogels (NGs) were used to prepare high-efficiency magnetic resonance imaging dual T1/T2 contrast agents for pH imaging. The polymeric NG matrix acts as a strong polydentate ligand that chelates the Mn cations in its inner cavity generating a hybrid NG structure. The Mn chelate NG is sensitive to pH changes, such that protonation induces a change of the polymer hydration state and consequent swelling. The swollen nanogel allows water molecules to enter and interact with the Mn chelate, shortening the relaxation time (switch ON) and giving rise to positive or negative contrast on T1- or T2-weighted magnetic resonance images.


Assuntos
Meios de Contraste/química , Géis/química , Imageamento por Ressonância Magnética/métodos , Manganês/química , Nanoestruturas/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/toxicidade , Géis/toxicidade , Concentração de Íons de Hidrogênio , Nanoestruturas/toxicidade , Neuroglia/efeitos dos fármacos , Ratos
15.
Nanomedicine ; 12(5): 1253-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26949164

RESUMO

Since pioneering work in the early 60s on the development of enzyme electrodes the field of sensors has evolved to different sophisticated technological platforms. Still, for biomedical applications, there are key requirements to meet in order to get fast, low-cost, real-time data acquisition, multiplexed and automatic biosensors. Nano-based sensors are one of the most promising healthcare applications of nanotechnology, and prone to be one of the first to become a reality. From all nanosensors strategies developed, Magnetic Relaxation Switches (MRSw) assays combine several features which are attractive for nanomedical applications such as safe biocompatibility of magnetic nanoparticles, increased sensitivity/specificity measurements, possibility to detect analytes in opaque samples (unresponsive to light-based interferences) and the use of homogeneous setting assay. This review aims at presenting the ongoing progress of MRSw technology and its most important applications in clinical medicine.


Assuntos
Técnicas Biossensoriais , Magnetismo , Nanomedicina , Nanopartículas , Humanos , Nanotecnologia
16.
Nanoscale ; 7(5): 2050-9, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25554363

RESUMO

Magnetic resonance based molecular imaging has emerged as a very promising technique for early detection and treatment of a wide variety of diseases, including cancer, neurodegenerative disorders, and vascular diseases. The limited sensitivity and specificity of conventional MRI are being overcome by the development of a new generation of contrast agents, using nanotechnology approaches, with improved magnetic and biological properties. In particular, for molecular imaging, high specificity, high sensitivity, and long blood circulation times are required. Furthermore, the lack of toxicity and immunogenicity together with low-cost scalable production are also necessary to get them into the clinics. In this work, we describe a facile, robust and cost-effective ligand-exchange method to synthesize dual T1 and T2 MRI contrast agents with long circulation times. These contrast agents are based on manganese ferrite nanoparticles (MNPs) between 6 and 14 nm in size covered by a 3 kDa polyethylene glycol (PEG) shell that leads to a great stability in aqueous media with high crystallinity and magnetization values, thus retaining the magnetic properties of the uncovered MNPs. Moreover, the PEGylated MNPs have shown different relaxivities depending on their size and the magnetic field applied. Thus, the 6 nm PEGylated MNPs are characterized by a low r2/r1 ratio of 4.9 at 1.5 T, hence resulting in good dual T1 and T2 contrast agents under low magnetic fields, whereas the 14 nm MNPs behave as excellent T2 contrast agents under high magnetic fields (r2 = 335.6 mM(-1) s(-1)). The polymer core shell of the PEGylated MNPs minimizes their cytotoxicity, and allows long blood circulation times. This combination of cellular compatibility and excellent T2 and r2/r1 values under low magnetic fields, together with long circulation times, make these nanomaterials very promising contrast agents for molecular imaging.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Compostos de Manganês/química , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Meios de Contraste/metabolismo , Feminino , Humanos , Rim/diagnóstico por imagem , Rim/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Radiografia , Baço/diagnóstico por imagem , Baço/metabolismo
17.
Neuropathol Appl Neurobiol ; 40(7): 911-32, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24707814

RESUMO

AIMS: Here, we tested the hypothesis that glial responses via the production of cytokines such as transforming growth factor-beta 1 (TGFß1) and tumour necrosis factor alpha (TNFα), which play important roles in neurodegenerative diseases, are correlated with the severity of congenital hydrocephalus in the hyh mouse model. We also searched for evidence of this association in human cases of primary hydrocephalus. METHODS: Hyh mice, which exhibit either severe or compensated long-lasting forms of hydrocephalus, were examined and compared with wild-type mice. TGFß1, TNFα and TNFαR1 mRNA levels were quantified using real-time PCR. TNFα and TNFαR1 were immunolocalized in the brain tissues of hyh mice and four hydrocephalic human foetuses relative to astroglial and microglial reactions. RESULTS: The TGFß1 mRNA levels were not significantly different between hyh mice exhibiting severe or compensated hydrocephalus and normal mice. In contrast, severely hydrocephalic mice exhibited four- and two-fold increases in the mean levels of TNFα and TNFαR1, respectively, compared with normal mice. In the hyh mouse, TNFα and TNFαR1 immunoreactivity was preferentially detected in astrocytes that form a particular periventricular reaction characteristic of hydrocephalus. However, these proteins were rarely detected in microglia, which did not appear to be activated. TNFα immunoreactivity was also detected in the glial reaction in the small group of human foetuses exhibiting hydrocephalus that were examined. CONCLUSIONS: In the hyh mouse model of congenital hydrocephalus, TNFα and TNFαR1 appear to be associated with the severity of the disease, probably mediating the astrocyte reaction, neurodegenerative processes and ischaemia.


Assuntos
Encéfalo/metabolismo , Hidrocefalia/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feto , Humanos , Hidrocefalia/patologia , Masculino , Camundongos , Microglia/metabolismo , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença
18.
Chem Commun (Camb) ; (26): 3922-4, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19662253

RESUMO

Combining sugar conjugates and DO3A-Gd complexes, paramagnetic gold glyconanoparticles (GNPs) with different relaxivity values were obtained and tested in vivo as MRI probes.


Assuntos
Carboidratos , Gadolínio/química , Glioma/diagnóstico , Ouro/química , Imageamento por Ressonância Magnética , Nanopartículas , Animais , Carboidratos/química , Camundongos , Nanopartículas/química
19.
Cancer Res ; 67(16): 7638-45, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17699768

RESUMO

The acidity of the tumor microenvironment aids tumor growth, and mechanisms causing it are targets for potential therapies. We have imaged extracellular pH (pHe) in C6 cell gliomas in rat brain using 1H magnetic resonance spectroscopy in vivo. We used a new probe molecule, ISUCA [(+/-)2-(imidazol-1-yl)succinic acid], and fast imaging techniques, with spiral acquisition in k-space. We obtained a map of metabolites [136 ms echo time (TE)] and then infused ISUCA in a femoral vein (25 mmol/kg body weight over 110 min) and obtained two consecutive images of pHe within the tumor (40 ms TE, each acquisition taking 25 min). pHe (where ISUCA was present) ranged from 6.5 to 7.5 in voxels of 0.75 microL and did not change detectably when [ISUCA] increased. Infusion of glucose (0.2 mmol/kg.min) decreased tumor pHe by, on average, 0.150 (SE, 0.007; P < 0.0001, 524 voxels in four rats) and increased the mean area of measurable lactate peaks by 54.4 +/- 3.4% (P < 0.0001, 287 voxels). However, voxel-by-voxel analysis showed that, both before and during glucose infusion, the distributions of lactate and extracellular acidity were very different. In tumor voxels where both could be measured, the glucose-induced increase in lactate showed no spatial correlation with the decrease in pHe. We suggest that, although glycolysis is the main source of protons, distributed sites of proton influx and efflux cause pHe to be acidic at sites remote from lactate production.


Assuntos
Glioma/metabolismo , Ácido Láctico/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Glucose/metabolismo , Glucose/farmacologia , Glicólise , Concentração de Íons de Hidrogênio , Masculino , Prótons , Ratos , Ratos Wistar , Succinatos/farmacologia
20.
MAGMA ; 20(1): 27-37, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17268782

RESUMO

A new iron-based T1 contrast agent consisting of a complex of iron ions coordinated to phosphate and amine ligands (Fe(phos) in short) has been characterized by spectroscopic and magnetic measurements. NMR relaxation studies showed r1 values to be dependent on the phosphate salt concentration, K2HPO4, present in the medium. r1 reaches a maximum value of 2.5 mM(-1) s(-1) for measurements carried out at 7 T and 298 K. 31P MRS, Mössbauer spectroscopy and magnetic measurements of Fe(phos) solutions suggest paramagnetic Fe3+ ions present in the studied iron-phosphate complex. In vitro and in vivo toxicity experiments with C6 cells and CD1 mice, respectively, demonstrated lack of toxicity for Fe(phos) at the highest dose tested in the MRI experiments (12 mM iron for C6 cells and 0.32 mmol iron/kg for mice). Finally, T1 weighted images of brain tumours in mice have shown positive contrast enhancement of Fe(phos) for tumour afflicted regions in the brain.


Assuntos
Meios de Contraste , Compostos de Ferro , Fosfatos , Compostos de Potássio , Animais , Linhagem Celular Tumoral , Imageamento por Ressonância Magnética , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA