Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 249, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745193

RESUMO

BACKGROUND: Chemotherapy, the mainstay treatment for metastatic cancer, presents serious side effects due to off-target exposure. In addition to the negative impact on patients' quality of life, side effects limit the dose that can be administered and thus the efficacy of the drug. Encapsulation of chemotherapeutic drugs in nanocarriers is a promising strategy to mitigate these issues. However, avoiding premature drug release from the nanocarriers and selectively targeting the tumour remains a challenge. RESULTS: In this study, we present a pioneering method for drug integration into nanoparticles known as mesoporous organosilica drugs (MODs), a distinctive variant of periodic mesoporous organosilica nanoparticles (PMOs) in which the drug is an inherent component of the silica nanoparticle structure. This groundbreaking approach involves the chemical modification of drugs to produce bis-organosilane prodrugs, which act as silica precursors for MOD synthesis. Mitoxantrone (MTO), a drug used to treat metastatic breast cancer, was selected for the development of MTO@MOD nanomedicines, which demonstrated a significant reduction in breast cancer cell viability. Several MODs with different amounts of MTO were synthesised and found to be efficient nanoplatforms for the sustained delivery of MTO after biodegradation. In addition, Fe3O4 NPs were incorporated into the MODs to generate magnetic MODs to actively target the tumour and further enhance drug efficacy. Importantly, magnetic MTO@MODs underwent a Fenton reaction, which increased cancer cell death twofold compared to non-magnetic MODs. CONCLUSIONS: A new PMO-based material, MOD nanomedicines, was synthesised using the chemotherapeutic drug MTO as a silica precursor. MTO@MOD nanomedicines demonstrated their efficacy in significantly reducing the viability of breast cancer cells. In addition, we incorporated Fe3O4 into MODs to generate magnetic MODs for active tumour targeting and enhanced drug efficacy by ROS generation. These findings pave the way for the designing of silica-based multitherapeutic nanomedicines for cancer treatment with improved drug delivery, reduced side effects and enhanced efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Sobrevivência Celular , Mitoxantrona , Compostos de Organossilício , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Sobrevivência Celular/efeitos dos fármacos , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Mitoxantrona/farmacologia , Mitoxantrona/química , Mitoxantrona/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Dióxido de Silício/química , Porosidade , Liberação Controlada de Fármacos , Nanopartículas/química , Células MCF-7 , Nanomedicina/métodos , Espécies Reativas de Oxigênio/metabolismo
2.
J Med Chem ; 67(8): 6410-6424, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38592014

RESUMO

We report two novel prodrug Pt(IV) complexes with bis-organosilane ligands in axial positions: cis-dichloro(diamine)-trans-[3-(triethoxysilyl)propylcarbamate]platinum(IV) (Pt(IV)-biSi-1) and cis-dichloro(diisopropylamine)-trans-[3-(triethoxysilyl) propyl carbamate]platinum(IV) (Pt(IV)-biSi-2). Pt(IV)-biSi-2 demonstrated enhanced in vitro cytotoxicity against colon cancer cells (HCT 116 and HT-29) compared with cisplatin and Pt(IV)-biSi-1. Notably, Pt(IV)-biSi-2 exhibited higher cytotoxicity toward cancer cells and lower toxicity on nontumorigenic intestinal cells (HIEC6). In preclinical mouse models of colorectal cancer, Pt(IV)-biSi-2 outperformed cisplatin in reducing tumor growth at lower concentrations, with reduced side effects. Mechanistically, Pt(IV)-biSi-2 induced permanent DNA damage independent of p53 levels. DNA damage such as double-strand breaks marked by histone gH2Ax was permanent after treatment with Pt(IV)-biSi-2, in contrast to cisplatin's transient effects. Pt(IV)-biSi-2's faster reduction to Pt(II) species upon exposure to biological reductants supports its superior biological response. These findings unveil a novel strategy for designing Pt(IV) anticancer prodrugs with enhanced activity and specificity, offering therapeutic opportunities beyond conventional Pt drugs.


Assuntos
Antineoplásicos , Compostos Organoplatínicos , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/síntese química , Ligantes , Camundongos , Linhagem Celular Tumoral , Silanos/química , Silanos/farmacologia , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Células HT29
3.
Nanomaterials (Basel) ; 11(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34578771

RESUMO

Among the different types of nanoparticles used in biomedical applications, Fe nanoparticles and mesoporous siliceous materials have been extensively investigated because of their possible theranostic applications. Here, we present hollow-shell mesoporous silica nanoparticles that encapsulate iron oxide and that are prepared using a drug-structure-directing agent concept (DSDA), composed of the model drug tryptophan modified by carbon aliphatic hydrocarbon chains. The modified tryptophan can behave as an organic template that allows directing the hollow-shell mesoporous silica framework, as a result of its micellisation and subsequent assembly of the silica around it. The one-pot synthesis procedure facilitates the incorporation of hydrophobically stabilised iron oxide nanoparticles into the hollow internal silica cavities, with the model drug tryptophan in the shell pores, thus enabling the incorporation of different functionalities into the all-in-one nanoparticles named mesoporous silica nanoparticles containing magnetic iron oxide (Fe3O4@MSNs). Additionally, the drug loading capability and the release of tryptophan from the silica nanoparticles were examined, as well as the cytostaticity and cytotoxicity of the Fe3O4@MSNs in different colon cancer cell lines. The results indicate that Fe3O4@MSNs have great potential for drug loading and drug delivery into specific target cells, thereby overcoming the limitations associated with conventional drug formulations, which are unable to selectively reach the sites of interest.

4.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360733

RESUMO

Mesoporous silica nanomaterials have emerged as promising vehicles in controlled drug delivery systems due to their ability to selectively transport, protect, and release pharmaceuticals in a controlled and sustained manner. One drawback of these drug delivery systems is their preparation procedure that usually requires several steps including the removal of the structure-directing agent (surfactant) and the later loading of the drug into the porous structure. Herein, we describe the preparation of mesoporous silica nanoparticles, as drug delivery systems from structure-directing agents based on the kidney-protector drug cilastatin in a simple, fast, and one-step process. The concept of drug-structure-directing agent (DSDA) allows the use of lipidic derivatives of cilastatin to direct the successful formation of mesoporous silica nanoparticles (MSNs). The inherent pharmacological activity of the surfactant DSDA cilastatin-based template permits that the MSNs can be directly employed as drug delivery nanocarriers, without the need of extra steps. MSNs thus synthesized have shown good sphericity and remarkable textural properties. The size of the nanoparticles can be adjusted by simply selecting the stirring speed, time, and aging temperature during the synthesis procedure. Moreover, the release experiments performed on these materials afforded a slow and sustained drug release over several days, which illustrates the MSNs potential utility as drug delivery system for the cilastatin cargo kidney protector. While most nanotechnology strategies focused on combating the different illnesses this methodology emphasizes on reducing the kidney toxicity associated to cancer chemotherapy.


Assuntos
Cilastatina , Sistemas de Liberação de Medicamentos , Lipídeos , Nanopartículas/química , Cilastatina/química , Cilastatina/farmacocinética , Cilastatina/farmacologia , Humanos , Rim , Lipídeos/química , Lipídeos/farmacocinética , Lipídeos/farmacologia , Dióxido de Silício
5.
Sci Total Environ ; 730: 139126, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32416507

RESUMO

Solar water disinfection (SODIS) is a simple, inexpensive and sustainable Household Water Treatment (HWT) that is appropriate for low-income countries or emergency situations. Usually, SODIS involves solar exposure of water contained in transparent polyethylene terephthalate (PET) bottles for a minimum of 6 h. Sunlight, especially UVB radiation, has been demonstrated to photoinactivate bacteria, viruses and protozoa. In this work, an in-depth study of the optical and mechanical properties, weathering and production prices of polymeric materials has been carried out to identify potential candidate materials for manufacturing SODIS devices. Three materials were ruled out (polystyrene (PS), polyvinyl chloride (PVC) and polyethylene (PE)) and four materials were initially selected for study: polymethylmethacrylate (PMMA), polypropylene (PP), polycarbonate (PC) and polyethylene terephthalate (PET). These plastics transmit sufficient solar radiation to kill waterborne pathogens with production costs compensated by their durability under solar exposure. A predictive model has been developed to quantitatively estimate the radiation available for SODIS inside the device as a function of the material and thickness. This tool has two applications: to evaluate design parameters such as thickness, and to estimate experimental requirements such as solar exposure time. In this work, this model evaluated scenarios involving different plastic materials, device thicknesses, and pathogens (Escherichia coli bacterium, MS2 virus and Cryptosporidium parvum protozoon). The developed Solar UV Calculator model is freely available and can be also applied to other customized materials and conditions.


Assuntos
Luz Solar , Bactérias , Desinfecção , Plásticos , Vírus , Água , Microbiologia da Água , Purificação da Água
6.
Mater Sci Eng C Mater Biol Appl ; 112: 110935, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409082

RESUMO

Hollow mesoporous silica nanoparticles (HMSNs) consist of a network of cavities confined by mesoporous shells that have emerged as promising tools for drug delivery or diagnostic. The physicochemical properties of HMSNs are dictated by the synthesis conditions but which conditions affect which property and how it impacts on biological interactions is unclear. Here by changing the concentration of the structure-directing agent (SDA), the pH and the ratio between SDA and added salt (NaCl) we determine the effects in size, morphology, surface charge and density or degree of compaction (physicochemical properties) of HMSNs and define their impact on their biological interactions with human colon cancer or healthy cells at the level of cellular uptake and viability. Increased size or density/degree of compaction of HMSNs increases their cytotoxicity. Strikingly, high salt concentrations in the synthesis medium leads to a spiky-shell morphology that provokes nuclear fragmentation and irreversible cell damage turning HMSNs lethal and unveiling intrinsic therapeutic potential. This strategy may open new avenues to design HMSNs nanoarchitectures with intrinsic therapeutic properties without incorporation of external pharmaceutical ingredients.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Fluoresceína-5-Isotiocianato/química , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Tamanho da Partícula , Porosidade , Cloreto de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA