Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 58(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36013497

RESUMO

Chronic obstructive pulmonary disease (COPD) patients frequently suffer from multiple comorbidities, resulting in poor outcomes for these patients. Diabetes is observed at a higher frequency in COPD patients than in the general population. Both type 1 and 2 diabetes mellitus are associated with pulmonary complications, and similar therapeutic strategies are proposed to treat these conditions. Epidemiological studies and disease models have increased our knowledge of these clinical associations. Several recent genome-wide association studies have identified positive genetic correlations between lung function and obesity, possibly due to alterations in genes linked to cell proliferation; embryo, skeletal, and tissue development; and regulation of gene expression. These studies suggest that genetic predisposition, in addition to weight gain, can influence lung function. Cigarette smoke exposure can also influence the differential methylation of CpG sites in genes linked to diabetes and COPD, and smoke-related single nucleotide polymorphisms are associated with resting heart rate and coronary artery disease. Despite the vast literature on clinical disease association, little direct mechanistic evidence is currently available demonstrating that either disease influences the progression of the other, but common pharmacological approaches could slow the progression of these diseases. Here, we review the clinical and scientific literature to discuss whether mechanisms beyond preexisting conditions, lifestyle, and weight gain contribute to the development of COPD associated with diabetes. Specifically, we outline environmental and genetic confounders linked with these diseases.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Doença Pulmonar Obstrutiva Crônica , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Aumento de Peso
2.
J Lipid Res ; 63(4): 100185, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202607

RESUMO

The LDL receptor-related protein 1 (LRP1) partakes in metabolic and signaling events regulated in a tissue-specific manner. The function of LRP1 in airways has not been studied. We aimed to study the function of LRP1 in smoke-induced disease. We found that bronchial epithelium of patients with chronic obstructive pulmonary disease and airway epithelium of mice exposed to smoke had increased LRP1 expression. We then knocked out LRP1 in human bronchial epithelial cells in vitro and in airway epithelial club cells in mice. In vitro, LRP1 knockdown decreased cell migration and increased transforming growth factor ß activation. Tamoxifen-inducible airway-specific LRP1 knockout mice (club Lrp1-/-) induced after complete lung development had increased inflammation in the bronchoalveolar space and lung parenchyma at baseline. After 6 months of smoke exposure, club Lrp1-/- mice showed a combined restrictive and obstructive phenotype, with lower compliance, inspiratory capacity, and forced expiratory volume0.05/forced vital capacity than WT smoke-exposed mice. This was associated with increased values of Ashcroft fibrotic index. Proteomic analysis of room air exposed-club Lrp1-/- mice showed significantly decreased levels of proteins involved in cytoskeleton signaling and xenobiotic detoxification as well as decreased levels of glutathione. The proteome fingerprint created by smoke eclipsed many of the original differences, but club Lrp1-/- mice continued to have decreased lung glutathione levels and increased protein oxidative damage and airway cell proliferation. Therefore, LRP1 deficiency leads to greater lung inflammation and damage and exacerbates smoke-induced lung disease.


Assuntos
Remodelação das Vias Aéreas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Estresse Oxidativo , Fumaça , Animais , Epitélio/metabolismo , Glutationa/metabolismo , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pulmão/metabolismo , Camundongos , Proteômica , Fumaça/efeitos adversos
3.
PLoS One ; 15(2): e0228279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027677

RESUMO

Smoke exposure is known to decrease total pulmonary surfactant and alter its composition, but the role of surfactant in chronic obstructive pulmonary disease (COPD) remains unknown. We aimed to analyze the compositional changes in the surfactant lipidome in COPD and identify specific lipids associated with pulmonary function decline. Bronchoalveolar lavage (BAL) fluid was obtained from 12 former smokers with COPD and 5 non-smoking, non-asthmatic healthy control volunteers. Lipids were extracted and analyzed by liquid chromatography and mass spectrometry. Pulmonary function data were obtained by spirometry, and correlations of lung function with lipid species were determined. Wild-type C57BL/6 mice were exposed to 6 months of second-hand smoke in a full-body chamber. Surfactant lipids were decreased by 60% in subjects with COPD. All phospholipid classes were dramatically decreased, including ether phospholipids, which have not been studied in pulmonary surfactant. Availability of phospholipid, cholesterol, and sphingomyelin in BAL strongly correlated with pulmonary function and this was attributable to specific lipid species of phosphatidylcholine with surface tension reducing properties, and of phosphatidylglycerol with antimicrobial roles, as well as to other less studied lipid species. Mice exposed to smoke for six months recapitulated surfactant lipidomic changes observed in human subjects with COPD. In summary, we show that the surfactant lipidome is substantially altered in subjects with COPD, and decreased availability of phospholipids correlated with decreased pulmonary function. Further investigation of surfactant alterations in COPD would improve our understanding of its physiopathology and reveal new potential therapeutic targets.


Assuntos
Lipídeos/análise , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Surfactantes Pulmonares/metabolismo , Idoso , Animais , Líquido da Lavagem Broncoalveolar/química , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fumantes , Poluição por Fumaça de Tabaco
4.
Artigo em Inglês | MEDLINE | ID: mdl-31978555

RESUMO

Staphylococcal nuclease and Tudor domain containing 1 (SND1) is an evolutionarily conserved protein present in eukaryotic cells from protozoa to mammals. SND1 has gained importance because it is overexpressed in aggressive cancer cells and diverse primary tumors. Indeed, it is regarded as a marker of cancer malignity. A broad range of molecular functions and the participation in many cellular processes have been attributed to SND1, mostly related to the regulation of gene expression. An increasing body of evidence points to a relevant relationship between SND1 and lipid metabolism. In this review, we summarize the knowledge about SND1 and its molecular and functional relationship with lipid metabolism. We highlight that SND1 plays a direct role in the regulation of cholesterol metabolism by affecting the activation of sterol response element-binding protein 2 (SREBP2) and we propose that that might have implications in the response of lipid homeostasis to stress situations.


Assuntos
Endonucleases/genética , Metabolismo dos Lipídeos/genética , Neoplasias/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Estresse Fisiológico/genética , Motivos de Aminoácidos , Animais , Colesterol/metabolismo , Biologia Computacional , Endonucleases/metabolismo , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Homeostase/genética , Humanos , Neoplasias/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Interferência de RNA , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Spliceossomos/metabolismo , Transcrição Gênica
5.
Arterioscler Thromb Vasc Biol ; 38(3): 509-519, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29371243

RESUMO

OBJECTIVE: Tissue macrophages induce and perpetuate proinflammatory responses, thereby promoting metabolic and cardiovascular disease. Lipoprotein lipase (LpL), the rate-limiting enzyme in blood triglyceride catabolism, is expressed by macrophages in atherosclerotic plaques. We questioned whether LpL, which is also expressed in the bone marrow (BM), affects circulating white blood cells and BM proliferation and modulates macrophage retention within the artery. APPROACH AND RESULTS: We characterized blood and tissue leukocytes and inflammatory molecules in transgenic LpL knockout mice rescued from lethal hypertriglyceridemia within 18 hours of life by muscle-specific LpL expression (MCKL0 mice). LpL-deficient mice had ≈40% reduction in blood white blood cell, neutrophils, and total and inflammatory monocytes (Ly6C/Ghi). LpL deficiency also significantly decreased expression of BM macrophage-associated markers (F4/80 and TNF-α [tumor necrosis factor α]), master transcription factors (PU.1 and C/EBPα), and colony-stimulating factors (CSFs) and their receptors, which are required for monocyte and monocyte precursor proliferation and differentiation. As a result, differentiation of macrophages from BM-derived monocyte progenitors and monocytes was decreased in MCKL0 mice. Furthermore, although LpL deficiency was associated with reduced BM uptake and accumulation of triglyceride-rich particles and macrophage CSF-macrophage CSF receptor binding, triglyceride lipolysis products (eg, linoleic acid) stimulated expression of macrophage CSF and macrophage CSF receptor in BM-derived macrophage precursor cells. Arterial macrophage numbers decreased after heparin-mediated LpL cell dissociation and by genetic knockout of arterial LpL. Reconstitution of LpL-expressing BM replenished aortic macrophage density. CONCLUSIONS: LpL regulates peripheral leukocyte levels and affects BM monocyte progenitor differentiation and aortic macrophage accumulation.


Assuntos
Aorta/enzimologia , Doenças da Aorta/enzimologia , Aterosclerose/enzimologia , Hiperlipoproteinemia Tipo I/enzimologia , Lipase Lipoproteica/deficiência , Macrófagos/enzimologia , Monócitos/enzimologia , Células Progenitoras Mieloides/enzimologia , Mielopoese , Animais , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Proliferação de Células , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Hiperlipoproteinemia Tipo I/sangue , Hiperlipoproteinemia Tipo I/genética , Hiperlipoproteinemia Tipo I/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipase Lipoproteica/genética , Macrófagos/patologia , Camundongos Knockout , Monócitos/patologia , Células Progenitoras Mieloides/patologia , Transdução de Sinais , Triglicerídeos/metabolismo
6.
Thorax ; 71(12): 1119-1129, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27558745

RESUMO

BACKGROUND: The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. METHODS: Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. RESULTS: Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. CONCLUSIONS: Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Nicotina/toxicidade , Doença Pulmonar Obstrutiva Crônica/etiologia , Tabagismo/complicações , Administração por Inalação , Adulto , Animais , Apoptose/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Células Cultivadas , Cílios/efeitos dos fármacos , Cílios/fisiologia , Citocinas/biossíntese , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Cloreto de Metacolina , Camundongos Endogâmicos A , Pessoa de Meia-Idade , Mucinas/biossíntese , Nicotina/administração & dosagem , Nicotina/farmacologia , Peptídeo Hidrolases/biossíntese , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia
7.
FASEB J ; 28(5): 2318-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24532668

RESUMO

Phospholipid transfer protein (PLTP) regulates phospholipid transport in the circulation and is highly expressed within the lung epithelium, where it is secreted into the alveolar space. Since PLTP expression is increased in chronic obstructive pulmonary disease (COPD), this study aimed to determine how PLTP affects lung signaling and inflammation. Despite its increased expression, PLTP activity decreased by 80% in COPD bronchoalveolar lavage fluid (BALF) due to serine protease cleavage, primarily by cathepsin G. Likewise, PLTP BALF activity levels decreased by 20 and 40% in smoke-exposed mice and in the media of smoke-treated small airway epithelial (SAE) cells, respectively. To assess how PLTP affected inflammatory responses in a lung injury model, PLTP siRNA or recombinant protein was administered to the lungs of mice prior to LPS challenge. Silencing PLTP at baseline caused a 68% increase in inflammatory cell infiltration, a 120 and 340% increase in ERK and NF-κB activation, and increased MMP-9, IL1ß, and IFN-γ levels after LPS treatment by 39, 140, and 190%, respectively. Conversely, PLTP protein administration countered these effects in this model. Thus, these findings establish a novel anti-inflammatory function of PLTP in the lung and suggest that proteolytic cleavage of PLTP by cathepsin G may enhance the injurious inflammatory responses that occur in COPD.


Assuntos
Catepsina G/metabolismo , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Pneumonia/metabolismo , Idoso , Animais , Líquido da Lavagem Broncoalveolar , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Humanos , Inflamação , Interferon gama/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/química , Pulmão/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fumar/efeitos adversos
8.
Front Physiol ; 4: 267, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24101903

RESUMO

Signal transducer and activator of transcription-3 (STAT3) regulates inflammation, apoptosis, and protease expression, which are critical processes associated with airway injury and lung tissue destruction. However, the precise role of STAT3 in the development of airway diseases such as chronic obstructive pulmonary disease (COPD) has not been established. This study shows that cigarette smoke activates STAT3 in the lungs of mice. Since cigarette smoke activated STAT3 in the lung, we then evaluated how the loss of STAT3 would impact on smoke-mediated lung inflammation, protease expression, and apoptosis. STAT3(+/+) and STAT3(-/-) mice were exposed to 8 days of cigarette smoke. Compared to the STAT3(+/+) mice bronchoalveolar lavage fluid (BALF) cellularity was significantly elevated in the STAT3(-/-) mice both before and after cigarette smoke exposure, with the increase in cells primarily macrophages. In addition, smoke exposure induced significantly higher BALF protein levels of Interleukin-1α (IL-1α), and monocyte chemotactic protein-1 (MCP-1) and higher tissue expression of keratinocyte chemoattractant (KC) in the STAT3(-/-) mice. Lung mRNA expression of MMP-12 was increased in STAT3(-/-) at baseline. However, the smoke-induced increase in MMP-10 expression seen in the STAT3(+/+) mice was not observed in the STAT3(-/-) mice. Moreover, lung protein levels of the anti-inflammatory proteins SOCS3 and IL-10 were markedly lower in the STAT3(-/-) mice compared to the STAT3(+/+) mice. Lastly, apoptosis, as determined by caspase 3/7 activity assay, was increased in the STAT3(-/-) at baseline to levels comparable to those observed in the smoke-exposed STAT3(+/+) mice. Together, these results indicate that the smoke-mediated induction of lung STAT3 activity may play a critical role in maintaining normal lung homeostasis and function.

9.
J Biol Chem ; 288(20): 14046-14058, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23542081

RESUMO

Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, although GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in subcutaneous tissue and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance, and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the "gatekeeper" for tissue lipid distribution.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo/metabolismo , Lipase Lipoproteica/deficiência , Lipase Lipoproteica/genética , Adipócitos/citologia , Animais , Transplante de Medula Óssea , Quilomícrons/farmacocinética , Lipídeos/química , Lipólise , Macrófagos/citologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Triglicerídeos/sangue , Triglicerídeos/metabolismo
10.
J Physiol Sci ; 63(3): 225-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23558863

RESUMO

In the context of a study of the involvement of SND1 (also known as coactivator p100) in biliary lipid secretion by primary rat hepatocytes, first-generation adenoviral vectors were used to promote the overexpression and underexpression of the protein SND1. Although differential expression of SND1 did not result in significant changes in the processes studied, some effects of the adenoviral infection itself were observed. In particular, infected hepatocytes showed a higher intracellular taurocholate accumulation capacity. Additionally, small heterodimer partner (SHP) and farnesoid X receptor (FXR), which are nuclear receptors essential for the regulation of bile salt metabolism and transport, were underregulated at the mRNA level. Our results suggest that adenoviral vectors could be altering some important control mechanism and indicate that adenoviral vectors should be used with caution as transfection vectors for hepatocytes when biliary lipid metabolism is to be studied.


Assuntos
Adenoviridae/genética , Ácidos e Sais Biliares/metabolismo , Vetores Genéticos/genética , Hepatócitos/virologia , Metabolismo dos Lipídeos , Animais , Elementos Antissenso (Genética) , Bile/metabolismo , Endonucleases , Hepatócitos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA