Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(10): 2393-2410.e14, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653235

RESUMO

SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.


Assuntos
COVID-19 , Evasão da Resposta Imune , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , COVID-19/imunologia , COVID-19/virologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Animais , Citotoxicidade Imunológica , Regulação para Baixo , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia
2.
Proc Natl Acad Sci U S A ; 119(41): e2209042119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36136978

RESUMO

Viruses employ a variety of strategies to escape or counteract immune responses, including depletion of cell surface major histocompatibility complex class I (MHC-I), that would ordinarily present viral peptides to CD8+ cytotoxic T cells. As part of a screen to elucidate biological activities associated with individual severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral proteins, we found that ORF7a reduced cell surface MHC-I levels by approximately fivefold. Nevertheless, in cells infected with SARS-CoV-2, surface MHC-I levels were reduced even in the absence of ORF7a, suggesting additional mechanisms of MHC-I down-regulation. ORF7a proteins from a sample of sarbecoviruses varied in their ability to induce MHC-I down-regulation and, unlike SARS-CoV-2, the ORF7a protein from SARS-CoV lacked MHC-I downregulating activity. A single amino acid at position 59 (T/F) that is variable among sarbecovirus ORF7a proteins governed the difference in MHC-I downregulating activity. SARS-CoV-2 ORF7a physically associated with the MHC-I heavy chain and inhibited the presentation of expressed antigen to CD8+ T cells. Specifically, ORF7a prevented the assembly of the MHC-I peptide loading complex and caused retention of MHC-I in the endoplasmic reticulum. The differential ability of ORF7a proteins to function in this way might affect sarbecovirus dissemination and persistence in human populations, particularly those with infection- or vaccine-elicited immunity.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos , COVID-19 , Antígenos de Histocompatibilidade Classe I , Proteínas Virais , Aminoácidos , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Complexo Principal de Histocompatibilidade , Peptídeos , SARS-CoV-2 , Proteínas Virais/imunologia
3.
Nat Commun ; 13(1): 1103, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232959

RESUMO

The human hematopoietic stem cell harbors remarkable regenerative potential that can be harnessed therapeutically. During early development, hematopoietic stem cells in the fetal liver undergo active expansion while simultaneously retaining robust engraftment capacity, yet the underlying molecular program responsible for their efficient engraftment remains unclear. Here, we profile 26,407 fetal liver cells at both the transcriptional and protein level including ~7,000 highly enriched and functional fetal liver hematopoietic stem cells to establish a detailed molecular signature of engraftment potential. Integration of transcript and linked cell surface marker expression reveals a generalizable signature defining functional fetal liver hematopoietic stem cells and allows for the stratification of enrichment strategies with high translational potential. More precisely, our integrated analysis identifies CD201 (endothelial protein C receptor (EPCR), encoded by PROCR) as a marker that can specifically enrich for engraftment potential. This comprehensive, multi-modal profiling of engraftment capacity connects a critical biological function at a key developmental timepoint with its underlying molecular drivers. As such, it serves as a useful resource for the field and forms the basis for further biological exploration of strategies to retain the engraftment potential of hematopoietic stem cells ex vivo or induce this potential during in vitro hematopoietic stem cell generation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fígado
4.
Cancer Cell ; 40(1): 103-108.e2, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34990570

RESUMO

Patients with cancer are more likely to have impaired immune responses to SARS-CoV-2 vaccines. We study the breadth of responses against SARS-CoV-2 variants after primary vaccination in 178 patients with a variety of tumor types and after booster doses in a subset. Neutralization of alpha, beta, gamma, and delta SARS-CoV-2 variants is impaired relative to wildtype, regardless of vaccine type. Regardless of viral variant, mRNA1273 is the most immunogenic, followed by BNT162b2, and then Ad26.COV2.S. Neutralization of more variants (breadth) is associated with a greater magnitude of wildtype neutralization, and increases with time since vaccination; advancing age associates with a lower breadth. The concentrations of anti-spike protein antibody are a good surrogate for breadth (positive predictive value of =90% at >1,000 U/mL). Booster SARS-CoV-2 vaccines confer enhanced breadth. These data suggest that achieving a high antibody titer is desirable to achieve broad neutralization; a single booster dose with the current vaccines increases the breadth of responses against variants.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Neoplasias/imunologia , SARS-CoV-2/imunologia , Idoso , Envelhecimento/imunologia , Antígenos Virais/imunologia , Feminino , Humanos , Imunização Secundária , Hospedeiro Imunocomprometido , Imunogenicidade da Vacina , Técnicas In Vitro , Masculino , Pessoa de Meia-Idade , Neoplasias/terapia , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral
5.
Cell Rep ; 36(2): 109378, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260940

RESUMO

Defining factors that govern CD8+ T cell immunodominance is critical for the rational design of vaccines for viral pathogens. Here, we assess the contribution of human leukocyte antigen (HLA) class-I-peptide stability for 186 optimal HIV epitopes across 18 HLA alleles using transporter associated with antigen processing (TAP)-deficient mono-allelic HLA-expressing cell lines. We find that immunodominant HIV epitopes increase surface stabilization of HLA class-I molecules in comparison to subdominant epitopes. HLA class-I-peptide stability is also strongly correlated with overall immunodominance hierarchies, particularly for epitopes from high-abundance proteins (e.g., Gag). Moreover, HLA alleles associated with HIV protection are preferentially stabilized by epitopes derived from topologically important viral regions at a greater frequency than neutral and risk alleles. These findings indicate that relative stabilization of HLA class-I is a key factor for CD8+ T cell epitope immunodominance hierarchies, with implications for HIV control and the design of T-cell-based vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Epitopos Imunodominantes/imunologia , Peptídeos/imunologia , Alelos , Feminino , Células HEK293 , Humanos , Desnaturação Proteica , Estabilidade Proteica , Propriedades de Superfície
6.
Proc Natl Acad Sci U S A ; 117(45): 28232-28238, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097667

RESUMO

Human leukocyte antigen (HLA) class I allotypes vary in their ability to present peptides in the absence of tapasin, an essential component of the peptide loading complex. We quantified tapasin dependence of all allotypes that are common in European and African Americans (n = 97), which revealed a broad continuum of values. Ex vivo examination of cytotoxic T cell responses to the entire HIV-1 proteome from infected subjects indicates that tapasin-dependent allotypes present a more limited set of distinct peptides than do tapasin-independent allotypes, data supported by computational predictions. This suggests that variation in tapasin dependence may impact the strength of the immune responses by altering peptide repertoire size. In support of this model, we observed that individuals carrying HLA class I genotypes characterized by greater tapasin independence progress more slowly to AIDS and maintain lower viral loads, presumably due to increased breadth of peptide presentation. Thus, tapasin dependence level, like HLA zygosity, may serve as a means to restrict or expand breadth of the HLA-I peptide repertoire across humans, ultimately influencing immune responses to pathogens and vaccines.


Assuntos
Apresentação de Antígeno/genética , Infecções por HIV , Antígenos de Histocompatibilidade Classe I , Proteínas de Membrana Transportadoras , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/imunologia , Peptídeos/metabolismo , Linfócitos T Citotóxicos/imunologia , Carga Viral/genética , Carga Viral/imunologia
7.
Front Immunol ; 9: 2361, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386333

RESUMO

Inhibitory KIRs play a central role in regulating NK cell activity. KIR2DL2/3 bind to HLA-C molecules, but the modulation of these interactions by viral infections and presentation of viral epitopes is not well-understood. We investigated whether the frequencies of KIR2DL2/3+ NK cells recognizing HLA-C*03:04/viral peptide complexes were impacted by YFV vaccination or HIV-1 and HCV infection. Ex vivo HLA class I tetramer staining of primary human NK cells derived from YFV-vaccinated individuals, or HIV-1- or HCV-infected individuals revealed that the YFV/HLA-C*03:04-NS2A4-13-tetramer bound to a larger proportion of KIR2DL2/3+ NK cells compared to HIV-1/HLA-C*03:04-Gag296-304- or HCV/HLA-C*03:04-Core136-144-tetramers. The YFV/HLA-C*03:04-NS2A4-13-tetramer also exhibited a stronger avidity to KIR2DL2/3 compared to the other tested tetramers. The proportional frequencies of KIR2DL2/3+ NK cells binding to the three tested HLA-C*03:04 tetramers were identical between YFV-vaccinated individuals or HIV-1- or HCV-infected individuals, and remained stable following YFV vaccination. These data demonstrate consistent hierarchies in the frequency of primary KIR2DL2/3+ NK cells binding HLA-C*03:04/peptide complexes that were determined by the HLA-C-presented peptide and not modulated by the underlying viral infection or vaccination.


Assuntos
Antígenos HLA-C/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Peptídeos/metabolismo , Receptores KIR2DL2/metabolismo , Receptores KIR2DL3/metabolismo , Citometria de Fluxo , Antígenos HLA-C/química , Antígenos HLA-C/metabolismo , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Complexos Multiproteicos , Peptídeos/química , Ligação Proteica , Vacinação , Vacinas/imunologia
8.
Gastroenterology ; 155(5): 1366-1371.e3, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30031767

RESUMO

Killer-cell immunoglobulin-like receptors (KIRs) are transmembrane glycoproteins expressed by natural killer (NK) cells. Binding of KIR3DS1 to its recently discovered ligand, HLA-F, activates NK cells and has been associated with resolution of hepatitis C virus (HCV) infection. We investigated the mechanisms by which KIR3DS1 contributes to the antiviral immune response. Using cell culture systems, mice with humanized livers, and primary liver tissue from HCV-infected individuals, we found that the KIR3DS1 ligand HLA-F is up-regulated on HCV-infected cells, and that interactions between KIR3DS1 and HLA-F contribute to NK cell-mediated control of HCV. Strategies to promote interaction between KIR3DS1 and HLA-F might be developed for treatment of infectious diseases and cancer.


Assuntos
Hepacivirus/fisiologia , Antígenos de Histocompatibilidade Classe I/fisiologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Receptores KIR3DS1/fisiologia , Replicação Viral , Células Cultivadas , Hepatite C/tratamento farmacológico , Humanos
9.
Front Immunol ; 8: 1496, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29184550

RESUMO

Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.

10.
Sci Rep ; 7(1): 2414, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28546555

RESUMO

The activating NK cell receptor KIR2DS1 has been shown to be involved in many disorders including autoimmune diseases, malignancies and pregnancy outcomes. However, the precise ligands and functions of this receptor remain unclear. We aimed to gain a better understanding of the factors involved in the binding of KIR2DS1 and its inhibitory counterpart KIR2DL1 to HLA class I molecules, and the consequences for KIR2DS1+ NK-cell function. A systematic screen that assessed binding to 97 HLA-I proteins confirmed that KIR2DS1-binding was narrowly restricted to HLA-C group 2 complexes, while KIR2DL1 showed a broader binding specificity. Using KIR2DS1ζ+ Jurkat reporter-cells and peptide-pulsed 721.221.TAP1KO-HLA-C*06:02 cells, we identified the synthetic peptide SRGPVHHLL presented by HLA-C*06:02 that strongly engaged KIR2DS1- and KIR2DL1-binding. Functional analysis showed that this HLA-C*06:02-presented peptide can furthermore activate primary KIR2DS1(+) NK cell clones. Thus, we demonstrated peptide-dependent binding of the activating NK cell receptor KIR2DS1, providing new insights into the underlying mechanisms involved in KIR2DS1-related disorders.


Assuntos
Epitopos de Linfócito T/imunologia , Ativação Linfocitária/imunologia , Peptídeos/imunologia , Receptores KIR/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Degranulação Celular/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/metabolismo , Expressão Gênica , Antígenos HLA/genética , Antígenos HLA/imunologia , Antígenos HLA/metabolismo , Antígenos HLA-C/genética , Antígenos HLA-C/imunologia , Antígenos HLA-C/metabolismo , Humanos , Células Jurkat , Ligantes , Ativação Linfocitária/genética , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Receptores KIR/genética , Receptores KIR2DL1/genética , Receptores KIR2DL1/metabolismo
11.
Nat Immunol ; 17(9): 1067-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27455421

RESUMO

The activating natural killer (NK)-cell receptor KIR3DS1 has been linked to the outcome of various human diseases, including delayed progression of disease caused by human immunodeficiency virus type 1 (HIV-1), yet a ligand that would account for its biological effects has remained unknown. We screened 100 HLA class I proteins and found that KIR3DS1 bound to HLA-F, a result we confirmed biochemically and functionally. Primary human KIR3DS1(+) NK cells degranulated and produced antiviral cytokines after encountering HLA-F and inhibited HIV-1 replication in vitro. Activation of CD4(+) T cells triggered the transcription and surface expression of HLA-F mRNA and HLA-F protein, respectively, and induced binding of KIR3DS1. HIV-1 infection further increased the transcription of HLA-F mRNA but decreased the binding of KIR3DS1, indicative of a mechanism for evading recognition by KIR3DS1(+) NK cells. Thus, we have established HLA-F as a ligand of KIR3DS1 and have demonstrated cell-context-dependent expression of HLA-F that might explain the widespread influence of KIR3DS1 in human disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/imunologia , Receptores KIR3DS1/metabolismo , Citocinas/metabolismo , Citotoxicidade Imunológica , Progressão da Doença , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Evasão da Resposta Imune , Células Jurkat , Ligantes , Ativação Linfocitária , Cultura Primária de Células , Receptores KIR3DS1/agonistas , Receptores KIR3DS1/genética , Latência Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA