Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Genet ; 37(3): 235-250, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272592

RESUMO

Medulloblastoma (MB) is a highly malignant cerebellar tumor predominantly diagnosed during childhood. Driven by pathogenic activation of sonic hedgehog (SHH) signaling, SHH subgroup MB (SHH-MB) accounts for nearly one-third of diagnoses. Extensive molecular analyses have identified biologically and clinically relevant intertumoral heterogeneity among SHH-MB tumors, prompting the recognition of novel subtypes. Beyond germline and somatic mutations promoting constitutive SHH signaling, driver alterations affect a multitude of pathways and molecular processes, including TP53 signaling, chromatin modulation, and post-transcriptional gene regulation. Here, we review recent advances in the underpinnings of SHH-MB in the context of molecular subtypes, clarify novel somatic and germline drivers, highlight cellular origins and developmental hierarchies, and describe the composition of the tumor microenvironment and its putative role in tumorigenesis.


Assuntos
Carcinogênese/genética , Cromatina/genética , Proteínas Hedgehog/genética , Meduloblastoma/genética , Heterogeneidade Genética , Mutação em Linhagem Germinativa/genética , Humanos , Meduloblastoma/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genética
2.
Nature ; 580(7803): 396-401, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296180

RESUMO

Cancer genomics has revealed many genes and core molecular processes that contribute to human malignancies, but the genetic and molecular bases of many rare cancers remains unclear. Genetic predisposition accounts for 5 to 10% of cancer diagnoses in children1,2, and genetic events that cooperate with known somatic driver events are poorly understood. Pathogenic germline variants in established cancer predisposition genes have been recently identified in 5% of patients with the malignant brain tumour medulloblastoma3. Here, by analysing all protein-coding genes, we identify and replicate rare germline loss-of-function variants across ELP1 in 14% of paediatric patients with the medulloblastoma subgroup Sonic Hedgehog (MBSHH). ELP1 was the most common medulloblastoma predisposition gene and increased the prevalence of genetic predisposition to 40% among paediatric patients with MBSHH. Parent-offspring and pedigree analyses identified two families with a history of paediatric medulloblastoma. ELP1-associated medulloblastomas were restricted to the molecular SHHα subtype4 and characterized by universal biallelic inactivation of ELP1 owing to somatic loss of chromosome arm 9q. Most ELP1-associated medulloblastomas also exhibited somatic alterations in PTCH1, which suggests that germline ELP1 loss-of-function variants predispose individuals to tumour development in combination with constitutive activation of SHH signalling. ELP1 is the largest subunit of the evolutionarily conserved Elongator complex, which catalyses translational elongation through tRNA modifications at the wobble (U34) position5,6. Tumours from patients with ELP1-associated MBSHH were characterized by a destabilized Elongator complex, loss of Elongator-dependent tRNA modifications, codon-dependent translational reprogramming, and induction of the unfolded protein response, consistent with loss of protein homeostasis due to Elongator deficiency in model systems7-9. Thus, genetic predisposition to proteome instability may be a determinant in the pathogenesis of paediatric brain cancers. These results support investigation of the role of protein homeostasis in other cancer types and potential for therapeutic interference.


Assuntos
Neoplasias Cerebelares/metabolismo , Mutação em Linhagem Germinativa , Meduloblastoma/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Criança , Feminino , Humanos , Masculino , Meduloblastoma/genética , Linhagem , RNA de Transferência/metabolismo , Fatores de Elongação da Transcrição/genética
3.
Cell Rep ; 30(2): 454-464.e5, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31940489

RESUMO

Loss of heterozygosity (LOH) at 1p36 occurs in multiple cancers, including neuroblastoma (NBL). MYCN amplification and 1p36 deletions tightly correlate with markers of tumor aggressiveness in NBL. Although distal 1p36 losses associate with single-copy MYCN tumors, larger deletions correlate with MYCN amplification, indicating two tumor suppressor regions in 1p36, only one of which facilitates MYCN oncogenesis. To better define this region, we genome-edited the syntenic 1p36 locus in primary mouse neural crest cells (NCCs), a putative NBL cell of origin. In in vitro cell transformation assays, we show that Chd5 loss confers most of the MYCN-independent tumor suppressor effects of 1p36 LOH. In contrast, MYCN-driven tumorigenesis selects for NCCs with Arid1a deletions from a pool of NCCs with randomly sized 1p36 deletions, establishing Arid1a as the MYCN-associated tumor suppressor. Our findings reveal that Arid1a loss collaborates with oncogenic MYCN and better define the tumor suppressor functions of 1p36 LOH in NBL.


Assuntos
Transtornos Cromossômicos/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/genética , Fatores de Transcrição/metabolismo , Animais , Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Humanos , Camundongos
4.
Cancer Res ; 79(6): 1054-1068, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30593524

RESUMO

Osteosarcoma is a malignant tumor in the bone, which originates from normal osteoblasts or osteoblast precursors. Normal osteoblasts express estrogen receptor alpha (ERα); however, osteosarcomas do not express ERα due to promoter DNA methylation. Here we show that treatment of 143B osteosarcoma cells with decitabine (DAC, 5-Aza-2'-deoxycytidine) induces expression of ERα and leads to decreased proliferation and concurrent induction of osteoblast differentiation. DAC exposure reduced protein expression of metastasis-associated markers VIMENTIN, SLUG, ZEB1, and MMP9, with a concurrent decrease in mRNA expression of known stem cell markers SOX2, OCT4, and NANOG. Treatment with 17ß-estradiol (E2) synergized with DAC to reduce proliferation. Overexpression of ERα inhibited proliferation and induced osteoblast differentiation, whereas knockout of ERα by CRISPR/Cas9 prevented the effects of DAC. In an orthotopic model of osteosarcoma, DAC inhibited tumor growth and metastasis of 143B cells injected into the tibia of NOD SCID gamma mice. Furthermore, ERα overexpression reduced tumor growth and metastasis, and ERα knockout prevented the effects of DAC in vivo. Together, these experiments provide preclinical evidence that the FDA-approved DNA methylation inhibitor DAC may be repurposed to treat patients with osteosarcoma based on its efficacy to decrease proliferation, to induce osteoblast differentiation, and to reduce metastasis to visceral organs.Significance: These findings describe the effects of DNA methyltransferase inhibition on ERα and its potential role as a tumor suppressor in osteosarcoma.See related commentary by Roberts, p. 1034 See related article by El Ayachi and colleagues; Cancer Res 79(5);982-93.


Assuntos
Metilação de DNA , Decitabina/farmacologia , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Prognóstico , Regiões Promotoras Genéticas , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Dev Biol ; 57(2-4): 225-39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23784834

RESUMO

Endocrine disruptors (EDs) belong to a large group of compounds, usually present as environmental pollutants, which can alter the homeostasis of living organisms by modifying hormonal balance and changing the normal patterns of gene regulation during development and cell differentiation. Hence, the development of male gonads and their functionality may be affected by exposure to specific EDs or their mixtures. The molecular mechanisms of action of these reprotoxicants leading to pathologies of the reproductive system such as testicular cancer, are complex and not well characterized. It is likely, however, that these compounds alter the interaction between the mechanisms of gene regulation and functional gene networks in windows of risk, mainly during embryonic development. Moreover, such changes could be transmitted through generations by epigenetic mechanisms. There are examples of the action of EDs on the expression of mRNAs, small non-coding RNAs and epigenetic marks in the developing testis associated with cellular and molecular alterations found in germ cell tumors. In the present review, we will discuss various aspects of genetic, transcriptomic and epigenetic changes related to testicular development, exposure to EDs and the occurrence of germ cell tumors.


Assuntos
Disruptores Endócrinos/efeitos adversos , Poluentes Ambientais/efeitos adversos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Embrionárias de Células Germinativas/etiologia , Neoplasias Testiculares/etiologia , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Testiculares/patologia
7.
Nucleic Acids Res ; 41(10): 5483-93, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23571754

RESUMO

Adenosine deaminases-acting-on-RNA (ADAR) proteins induce adenosine-to-inosine editing in double-stranded RNA molecules. This editing generates RNA diversity at the post-transcriptional level, and it has been implicated in the control of cell differentiation and development. The editing of microRNA (miRNA) precursors, along with Tudor-SN (Snd1) activity, could lead to the elimination of selected miRNAs and reprogram miRNA activity. Here, we report the dynamics of adenosine-to-inosine editing in miRNA precursors and their selected elimination during mouse preimplantation development. Adar1p110 and Snd1 were found to be strongly but differentially expressed in oocytes and zygotes with respect to later pre-implantation stages. When the biogenesis of miR-151 was assessed, the majority of miR-151 precursors was edited and subsequently eliminated during early development. Deep sequencing of this and other miRNAs confirmed that, in general, edited precursors were selectively eliminated at early post-zygotic stages. Moreover, in oocytes and throughout the zygote-to-blastocyst stages, Tudor-SN accumulated in newly discovered aggregates termed 'T bodies'. These results provide new insight into how editing and Tudor-SN-mediated elimination of miRNA precursors is regulated during early development.


Assuntos
Adenosina Desaminase/metabolismo , Blastocisto/metabolismo , MicroRNAs/metabolismo , Oócitos/metabolismo , Edição de RNA , Precursores de RNA/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/genética , Animais , Endonucleases , Regulação da Expressão Gênica , Inosina/metabolismo , Camundongos , MicroRNAs/química , Família Multigênica , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA