Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Cell Sci ; 137(19)2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350674

RESUMO

SGEF (also known as ARHGEF26), a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of both E-cadherin and ZO-1 (also known as TJP1) protein levels. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble-SGEF-Dlg1 complex. Our results show that the three members of the ternary complex are required to maintain the stability of the apical junctions, ZO-1 protein levels and tight junction (TJ) permeability. In contrast, only SGEF is necessary to regulate E-cadherin levels. The absence of SGEF destabilizes the E-cadherin-catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, ß-catenin signaling and the transcriptional repressor Slug (also known as SNAI2).


Assuntos
Caderinas , Células Epiteliais , Proteínas de Membrana , Fatores de Troca de Nucleotídeo Guanina Rho , Fatores de Transcrição da Família Snail , Proteína da Zônula de Oclusão-1 , Caderinas/metabolismo , Caderinas/genética , Humanos , Células Epiteliais/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Animais , Proteína 1 Homóloga a Discs-Large/metabolismo , Proteína 1 Homóloga a Discs-Large/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Transcrição Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células Madin Darby de Rim Canino , Junções Íntimas/metabolismo , Cães , Transdução de Sinais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Estabilidade Proteica , beta Catenina/metabolismo , beta Catenina/genética
2.
Mol Biol Cell ; 35(7): ar92, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758660

RESUMO

Chromaffin cells of the adrenal medulla transduce sympathetic nerve activity into stress hormone secretion. The two neurotransmitters principally responsible for coupling cell stimulation to secretion are acetylcholine and pituitary adenylate activating polypeptide (PACAP). In contrast to acetylcholine, PACAP evokes a persistent secretory response from chromaffin cells. However, the mechanisms by which PACAP acts are poorly understood. Here, it is shown that PACAP induces sustained increases in cytosolic Ca2+ which are disrupted when Ca2+ influx through L-type channels is blocked or internal Ca2+ stores are depleted. PACAP liberates stored Ca2+ via inositol trisphosphate receptors (IP3Rs) on the endoplasmic reticulum (ER), thereby functionally coupling Ca2+ mobilization to Ca2+ influx and supporting Ca2+-induced Ca2+-release. These Ca2+ influx and mobilization pathways are unified by an absolute dependence on phospholipase C epsilon (PLCε) activity. Thus, the persistent secretory response that is a defining feature of PACAP activity, in situ, is regulated by a signaling network that promotes sustained elevations in intracellular Ca2+ through multiple pathways.


Assuntos
Sinalização do Cálcio , Cálcio , Células Cromafins , Retículo Endoplasmático , Receptores de Inositol 1,4,5-Trifosfato , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células Cromafins/metabolismo , Bovinos , Canais de Cálcio Tipo L/metabolismo
3.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38260572

RESUMO

Chromaffin cells of the adrenal medulla transduce sympathetic nerve activity into stress hormone secretion. The two neurotransmitters principally responsible for coupling cell stimulation to secretion are acetylcholine and pituitary adenylate activating polypeptide (PACAP). In contrast to acetylcholine, PACAP evokes a persistent secretory response from chromaffin cells. However, the mechanisms by which PACAP acts are poorly understood. Here, it is shown that PACAP induces sustained increases in cytosolic Ca 2+ which are disrupted when Ca 2+ influx through L-type channels is blocked or internal Ca 2+ stores are depleted. PACAP liberates stored Ca 2+ via inositol trisphosphate receptors (IP3Rs) on the endoplasmic reticulum (ER), thereby functionally coupling Ca 2+ mobilization to Ca 2+ influx and supporting Ca 2+ -induced Ca 2+ -release. These Ca 2+ influx and mobilization pathways are unified by an absolute dependence on phospholipase C epsilon (PLCε) activity. Thus, the persistent secretory response that is a defining feature of PACAP activity, in situ , is regulated by a signaling network that promotes sustained elevations in intracellular Ca 2+ through multiple pathways.

4.
Tissue Eng Part A ; 30(7-8): 314-329, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37725574

RESUMO

Mechano-rehabilitation, also known as mechanotherapy, represents the forefront of noninvasive treatment for musculoskeletal (MSK) tissue disorders, encompassing conditions affecting tendons, cartilage, ligaments, and muscles. Recent emphasis has underscored the significance of macrophage presence in the healing of MSK tissues. However, a considerable gap still exists in comprehending how mechanical strains associated with mechanotherapy impact both the naïve and pro-inflammatory macrophage phenotypes within the three-dimensional (3D) tissue matrix, as well as whether the shift in macrophage phenotype is contingent on the mechanical strains inherent to mechanotherapy. In this study, we delineated alterations in mechano-adaptation and polarization of both naive and M1 macrophages within 3D matrices, elucidating their response to varying degrees of mechanical strain exposure (3%, 6%, and 12%). To evaluate macrophage mechano-adaptation and mechano-sensitivity within 3D collagen matrices under mechanical loading, we employed structural techniques (scanning electron microscopy, histology), quantitative morphological measures for phenotypic assessment, and genotypic methods such as quantitative real-time polymerase chain reaction. Our data reveal that the response of macrophages to mechanical loading is not only contingent on their specific sub-phenotype but also varies with the amplitude of mechanical strain. Notably, although supra-mechanical loading (12% strain) was requisite to induce a phenotypic shift in naive (M0) macrophages, as little as 3% mechanical strain proved sufficient to prompt phenotypic alterations in pro-inflammatory (M1) macrophages. These findings pave the way for leveraging the macrophage mechanome in customized and targeted applications of mechanical strain within the mechano-therapeutic framework. Considering the prevalence of MSK tissue injuries and their profound societal and economic implications, the development of well-informed and effective clinical mechanotherapy modalities for MSK tissue healing becomes an imperative endeavor. Impact statement Mechanotherapy is a primary noninvasive treatment for musculoskeletal (MSK) tissue injuries, but the effect of mechanical strain on macrophage phenotypes is not fully understood. A recent study found that macrophage response to mechanical loading is both sub-phenotype specific and amplitude-dependent, with even small strains enough to induce phenotypic changes in pro-inflammatory macrophages. These findings could pave the way for using macrophage mechanome in targeted mechanotherapy applications for better MSK tissue healing.


Assuntos
Macrófagos , Sistema Musculoesquelético , Cicatrização , Colágeno/farmacologia , Fenótipo
5.
Tissue Eng Part A ; 29(21-22): 579-593, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37639358

RESUMO

In periodontitis, the bone remodeling process is disrupted by the prevalent involvement of bacteria-induced proinflammatory macrophage cells and their interaction with osteoblast cells residing within the infected bone tissue. The complex interaction between the cells needs to be deciphered to understand the dominant player in tipping the balance from osteogenesis to osteoclastogenesis. Yet, only a few studies have examined the crosstalk interaction between osteoblasts and macrophages using biomimetic three-dimensional (3D) tissue-like matrices. In this study, we created a cell-laden 3D tissue analog to study indirect crosstalk between these two cell types and their direct synergistic effect when cultured on a 3D scaffold. The cell-specific role of osteoclast differentiation was investigated through osteoblast- and proinflammatory macrophage-specific feedback studies. The results suggested that when macrophages were exposed to osteoblasts-derived conditioned media from the mineralized matrix, the M1 macrophages tended to maintain their proinflammatory phenotype. Further, when osteoblasts were exposed to secretions from proinflammatory macrophages, they demonstrated elevated receptor activator of nuclear factor-κB ligand (RANKL) expression and decreased alkaline phosphate (ALP) activities compared to osteoblasts exposed to only osteogenic media. In addition, the upregulation of tumor necrosis factor-alpha (TNF-α) and c-Fos in proinflammatory macrophages within the 3D matrix indirectly increased the RANKL expression and reduced the ALP activity of osteoblasts, promoting osteoclastogenesis. The contact coculturing with osteoblast and proinflammatory macrophages within the 3D matrix demonstrated that the proinflammatory markers (TNF-α and interleukin-1ß) expressions were upregulated. In contrast, anti-inflammatory markers (c-c motif chemokine ligand 18 [CCL18]) were downregulated, and osteoclastogenic markers (TNF receptor associated factor 6 [TRAF6] and acid phosphatase 5, tartrate resistant [ACP5]) were unchanged. The data suggested that the osteoblasts curbed the osteoclastogenic differentiation of macrophages while macrophages still preserved their proinflammatory lineages. The osteoblast within the 3D coculture demonstrated increased ALP activity and did not express RANKL significantly different than the osteoblast cultured within a 3D collagen matrix without macrophages. Contact coculturing has an anabolic effect on bone tissue in a bacteria-derived inflammatory environment.


Assuntos
Osteoclastos , Periodontite , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Osteoblastos/metabolismo , Macrófagos/metabolismo , Osteogênese , Diferenciação Celular , Periodontite/metabolismo , Ligante RANK/metabolismo , Ligante RANK/farmacologia
7.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36571786

RESUMO

Invadopodia formation is regulated by Rho GTPases. However, the molecular mechanisms that control Rho GTPase signaling at invadopodia remain poorly understood. Here, we have identified ARHGAP17, a Cdc42-specific RhoGAP, as a key regulator of invadopodia in breast cancer cells and characterized a novel ARHGAP17-mediated signaling pathway that controls the spatiotemporal activity of Cdc42 during invadopodia turnover. Our results show that during invadopodia assembly, ARHGAP17 localizes to the invadopodia ring and restricts the activity of Cdc42 to the invadopodia core, where it promotes invadopodia growth. Invadopodia disassembly starts when ARHGAP17 translocates from the invadopodia ring to the core, in a process that is mediated by its interaction with the Cdc42 effector CIP4. Once at the core, ARHGAP17 inactivates Cdc42 to promote invadopodia disassembly. Our results in invadopodia provide new insights into the coordinated transition between the activation and inactivation of Rho GTPases.


Assuntos
Neoplasias da Mama , Proteínas Ativadoras de GTPase , Podossomos , Proteína cdc42 de Ligação ao GTP , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Podossomos/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Humanos , Proteínas Ativadoras de GTPase/metabolismo
8.
Trends Cell Biol ; 32(10): 815-818, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35753960

RESUMO

Rac-GEFs operate in a nonredundant manner as downstream effectors of receptor tyrosine kinases to promote ruffle formation, indicative of unique modes of regulation and targeting. Current research is shedding light on the intricate signaling paradigms shaping spatiotemporal activation of the small GTPase Rac during the generation of actin-rich membrane protrusions.


Assuntos
Actinas , Transdução de Sinais , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Humanos
9.
STAR Protoc ; 3(2): 101437, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35677607

RESUMO

Ruffles are actin-rich membrane protrusions implicated in actin reorganization and initiation of cell motility. Here, we describe methods for measuring and analyzing ruffle dynamics in live cells and average ruffle area per cell in fixed samples. The specific steps described are for the analysis of A549 lung adenocarcinoma cells, but the protocol can be applied to other cell types. The protocol has applications for dissecting the signaling events linked to ruffling. For complete details on the use and execution of this protocol, please refer to Cooke et al. (2021).


Assuntos
Actinas , Adenocarcinoma de Pulmão , Actinas/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Estruturas da Membrana Celular/metabolismo , Movimento Celular , Humanos
10.
Eur J Cell Biol ; 101(2): 151209, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35180567

RESUMO

Cancer progression and metastasis are processes that involve significant cellular changes. Many of these changes include alterations in the activity of the Rho GTPase family of proteins. Rho GTPases are signaling proteins that function as molecular switches and are involved in the regulation of most major cellular processes. Cancer development is often associated with abnormalities in Rho GTPase signaling. Rho GTPase signaling is regulated by two families of proteins, guanine nucleotide-exchange factors (RhoGEFs) and GTPase activating proteins (RhoGAPs), that function upstream of the Rho proteins to regulate their activation and inactivation, respectively. While initial work has focused on the role of RhoGEFs in cancer, the RhoGAP family members are rapidly being established as key regulators of cancer development and progression. The aim of this review is to summarize our advances in understanding the role of RhoGAPs in cancer and to discuss their significance in the development of therapeutics.


Assuntos
Proteínas Ativadoras de GTPase , Neoplasias , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Neoplasias/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
11.
Cell Rep ; 37(5): 109905, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731623

RESUMO

Despite the undisputable role of the small GTPase Rac1 in the regulation of actin cytoskeleton reorganization, the Rac guanine-nucleotide exchange factors (Rac-GEFs) involved in Rac1-mediated motility and invasion in human lung adenocarcinoma cells remain largely unknown. Here, we identify FARP1, ARHGEF39, and TIAM2 as essential Rac-GEFs responsible for Rac1-mediated lung cancer cell migration upon EGFR and c-Met activation. Noteworthily, these Rac-GEFs operate in a non-redundant manner by controlling distinctive aspects of ruffle dynamics formation. Mechanistic analysis reveals a leading role of the AXL-Gab1-PI3K axis in conferring pro-motility traits downstream of EGFR. Along with the positive association between the overexpression of Rac-GEFs and poor lung adenocarcinoma patient survival, we show that FARP1 and ARHGEF39 are upregulated in EpCam+ cells sorted from primary human lung adenocarcinomas. Overall, our study reveals fundamental insights into the complex intricacies underlying Rac-GEF-mediated cancer cell motility signaling, hence underscoring promising targets for metastatic lung cancer therapy.


Assuntos
Adenocarcinoma de Pulmão/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias Pulmonares/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Células A549 , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Idoso , Movimento Celular , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Proteína Tirosina Quinases/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Receptor Tirosina Quinase Axl
12.
Sci Rep ; 11(1): 17455, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465801

RESUMO

Raf-1 kinase inhibitor protein was initially discovered as a physiological kinase inhibitor of the MAPK signaling pathway and was later shown to suppress cancer cell invasion and metastasis. Yet, the molecular mechanism through which RKIP executes its effects is not completely defined. RhoA has both a pro- and anti-metastatic cell-context dependent functions. Given that Rho GTPases primarily function on actin cytoskeleton dynamics and cell movement regulation, it is possible that one way RKIP hinders cancer cell invasion/metastasis is by targeting these proteins. Here we show that RKIP inhibits cancer cell invasion and metastasis by stimulating RhoA anti-tumorigenic functions. Mechanistically, RKIP activates RhoA in an Erk2 and GEF-H1 dependent manner to enhance E-cadherin membrane localization and inhibit CCL5 expression.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/prevenção & controle , Regulação Neoplásica da Expressão Gênica , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/secundário , Proliferação de Células , Feminino , Humanos , Camundongos , Proteína de Ligação a Fosfatidiletanolamina/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína rhoA de Ligação ao GTP/genética
13.
J Biol Chem ; 295(40): 13698-13710, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32817335

RESUMO

A large number of aggressive cancer cell lines display elevated levels of activated Rac1, a small GTPase widely implicated in cytoskeleton reorganization, cell motility, and metastatic dissemination. A commonly accepted methodological approach for detecting Rac1 activation in cancer cells involves the use of a conformation-sensitive antibody that detects the active (GTP-bound) Rac1 without interacting with the GDP-bound inactive form. This antibody has been extensively used in fixed cell immunofluorescence and immunohistochemistry. Taking advantage of prostate and pancreatic cancer cell models known to have high basal Rac1-GTP levels, here we have established that this antibody does not recognize Rac1 but rather detects the intermediate filament protein vimentin. Indeed, Rac1-null PC3 prostate cancer cells or cancer models with low levels of Rac1 activation still show a high signal with the anti-Rac1-GTP antibody, which is lost upon silencing of vimentin expression. Moreover, this antibody was unable to detect activated Rac1 in membrane ruffles induced by epidermal growth factor stimulation. These results have profound implications for the study of this key GTPase in cancer, particularly because a large number of cancer cell lines with characteristic mesenchymal features show simultaneous up-regulation of vimentin and high basal Rac1-GTP levels when measured biochemically. This misleading correlation can lead to assumptions about the validity of this antibody and inaccurate conclusions that may affect the development of appropriate therapeutic approaches for targeting the Rac1 pathway.


Assuntos
Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Membrana Celular/genética , Membrana Celular/patologia , Humanos , Masculino , Microscopia de Fluorescência , Proteínas de Neoplasias/genética , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas rac1 de Ligação ao GTP/genética
14.
Cell Commun Signal ; 18(1): 129, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811537

RESUMO

BACKGROUND: Syndecans regulate cell migration thus having key roles in scarring and wound healing processes. Our previous results have shown that Thy-1/CD90 can engage both αvß3 integrin and Syndecan-4 expressed on the surface of astrocytes to induce cell migration. Despite a well-described role of Syndecan-4 during cell movement, information is scarce regarding specific Syndecan-4 partners involved in Thy-1/CD90-stimulated cell migration. METHODS: Mass spectrometry (MS) analysis of complexes precipitated with the Syndecan-4 cytoplasmic tail peptide was used to identify potential Syndecan-4-binding partners. The interactions found by MS were validated by immunoprecipitation and proximity ligation assays. The conducted research employed an array of genetic, biochemical and pharmacological approaches, including: PAR-3, Syndecan-4 and Tiam1 silencing, active Rac1 GEFs affinity precipitation, and video microscopy. RESULTS: We identified PAR-3 as a Syndecan-4-binding protein. Its interaction depended on the carboxy-terminal EFYA sequence present on Syndecan-4. In astrocytes where PAR-3 expression was reduced, Thy-1-induced cell migration and focal adhesion disassembly was impaired. This effect was associated with a sustained Focal Adhesion Kinase activation in the siRNA-PAR-3 treated cells. Our data also show that Thy-1/CD90 activates Tiam1, a PAR-3 effector. Additionally, we found that after Syndecan-4 silencing, Tiam1 activation was decreased and it was no longer recruited to the membrane. Syndecan-4/PAR-3 interaction and the alteration in focal adhesion dynamics were validated in mouse embryonic fibroblast (MEF) cells, thereby identifying this novel Syndecan-4/PAR-3 signaling complex as a general mechanism for mesenchymal cell migration involved in Thy-1/CD90 stimulation. CONCLUSIONS: The newly identified Syndecan-4/PAR-3 signaling complex participates in Thy-1/CD90-induced focal adhesion disassembly in mesenchymal cells. The mechanism involves focal adhesion kinase dephosphorylation and Tiam1 activation downstream of Syndecan-4/PAR-3 signaling complex formation. Additionally, PAR-3 is defined here as a novel adhesome-associated component with an essential role in focal adhesion disassembly during polarized cell migration. These novel findings uncover signaling mechanisms regulating cell migration, thereby opening up new avenues for future research on Syndecan-4/PAR-3 signaling in processes such as wound healing and scarring.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Adesões Focais/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Sindecana-4/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Adesão Celular , Linhagem Celular , Movimento Celular , Polaridade Celular , Fibroblastos/metabolismo , Inativação Gênica , Camundongos , Microtúbulos/metabolismo , Ligação Proteica , Ratos , Antígenos Thy-1/metabolismo
15.
Cancers (Basel) ; 12(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092966

RESUMO

The GTPase Rac1 is a well-established master regulator of cell motility and invasiveness contributing to cancer metastasis. Dysregulation of the Rac1 signaling pathway, resulting in elevated motile and invasive potential, has been reported in multiple cancers. However, there are limited studies on the regulation of Rac1 in prostate cancer. Here, we demonstrate that aggressive androgen-independent prostate cancer cells display marked hyperactivation of Rac1. This hyperactivation is independent of P-Rex1 activity or its direct activators, the PI3K product PIP3 and Gßγ subunits. Furthermore, we demonstrate that the motility and invasiveness of PC3 prostate cancer cells is independent of P-Rex1, supporting the analysis of publicly available datasets indicating no correlation between high P-Rex1 expression and cancer progression in patients. Rac1 hyperactivation was not related to the presence of activating Rac1 mutations and was insensitive to overexpression of a Rac-GAP or the silencing of specific Rac-GEFs expressed in prostate cancer cells. Interestingly, active Rac1 levels in these cells were markedly reduced by elevations in intracellular calcium or by serum stimulation, suggesting the presence of an alternative means of Rac1 regulation in prostate cancer that does not involve previously established paradigms.

16.
J Cell Biol ; 218(8): 2699-2725, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31248911

RESUMO

The canonical Scribble polarity complex is implicated in regulation of epithelial junctions and apical polarity. Here, we show that SGEF, a RhoG-specific GEF, forms a ternary complex with Scribble and Dlg1, two members of the Scribble complex. SGEF targets to apical junctions in a Scribble-dependent fashion and functions in the regulation of actomyosin-based contractility and barrier function at tight junctions as well as E-cadherin-mediated formation of adherens junctions. Surprisingly, SGEF does not control the establishment of polarity. However, in 3D cysts, SGEF regulates the formation of a single open lumen. Interestingly, SGEF's nucleotide exchange activity regulates the formation and maintenance of adherens junctions, and in cysts the number of lumens formed, whereas SGEF's scaffolding activity is critical for regulation of actomyosin contractility and lumen opening. We propose that SGEF plays a key role in coordinating junctional assembly and actomyosin contractility by bringing together Scribble and Dlg1 and targeting RhoG activation to cell-cell junctions.


Assuntos
Proteína 1 Homóloga a Discs-Large/metabolismo , Células Epiteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Junções Intercelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Actomiosina/metabolismo , Junções Aderentes/metabolismo , Animais , Caderinas/metabolismo , Polaridade Celular , Proteína 1 Homóloga a Discs-Large/química , Cães , Embrião não Mamífero/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Ligação Proteica , Domínios Proteicos , Junções Íntimas/metabolismo , Xenopus laevis
17.
Sci Rep ; 9(1): 5163, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914742

RESUMO

Focal adhesions (FA) are a complex network of proteins that allow the cell to form physical contacts with the extracellular matrix (ECM). FA assemble and disassemble in a dynamic process, orchestrated by a variety of cellular components. However, the underlying mechanisms that regulate adhesion turnover remain poorly understood. Here we show that RhoG, a Rho GTPase related to Rac, modulates FA dynamics. When RhoG expression is silenced, FA are more stable and live longer, resulting in an increase in the number and size of adhesions, which are also more mature and fibrillar-like. Silencing RhoG also increases the number and thickness of stress fibers, which are sensitive to blebbistatin, suggesting contractility is increased. The molecular mechanism by which RhoG regulates adhesion turnover is yet to be characterized, but our results demonstrate that RhoG plays a role in the regulation of microtubule-mediated FA disassembly.


Assuntos
Adesões Focais/metabolismo , Microtúbulos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Actomiosina/metabolismo , Linhagem Celular Tumoral , Forma Celular , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Pseudópodes/metabolismo , Fibras de Estresse/metabolismo
18.
Int J Mol Sci ; 18(3)2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257035

RESUMO

The interferon antiviral pathways and prostate cancer genetics converge on a regulated endoribonuclease, RNase L. Positional cloning and linkage studies mapped Hereditary Prostate Cancer 1 (HPC1) to RNASEL. To date, there is no correlation of viral infections with prostate cancer, suggesting that RNase L may play additional roles in tumor suppression. Here, we demonstrate a role of RNase L as a suppressor of androgen receptor (AR) signaling, cell migration and matrix metalloproteinase activity. Using RNase L mutants, we show that its nucleolytic activity is dispensable for both AR signaling and migration. The most prevalent HPC1-associated mutations in RNase L, R462Q and E265X, enhance AR signaling and cell migration. RNase L negatively regulates cell migration and attachment on various extracellular matrices. We demonstrate that RNase L knockdown cells promote increased cell surface expression of integrin ß1 which activates Focal Adhesion Kinase-Sarcoma (FAK-Src) pathway and Ras-related C3 botulinum toxin substrate 1-guanosine triphosphatase (Rac1-GTPase) activity to increase cell migration. Activity of matrix metalloproteinase (MMP)-2 and -9 is significantly increased in cells where RNase L levels are ablated. We show that mutations in RNase L found in HPC patients may promote prostate cancer by increasing expression of AR-responsive genes and cell motility and identify novel roles of RNase L as a prostate cancer susceptibility gene.


Assuntos
Endorribonucleases/metabolismo , Metaloproteinases da Matriz/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Endorribonucleases/genética , Ativação Enzimática , Humanos , Masculino , Mutação , Neoplasias da Próstata/genética , Ligação Proteica , Estabilidade Proteica
19.
J Cell Sci ; 130(6): 1064-1077, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202690

RESUMO

One of the hallmarks of cancer is the ability of tumor cells to invade surrounding tissues and metastasize. During metastasis, cancer cells degrade the extracellular matrix, which acts as a physical barrier, by developing specialized actin-rich membrane protrusion structures called invadopodia. The formation of invadopodia is regulated by Rho GTPases, a family of proteins that regulates the actin cytoskeleton. Here, we describe a novel role for RhoG in the regulation of invadopodia disassembly in human breast cancer cells. Our results show that RhoG and Rac1 have independent and opposite roles in the regulation of invadopodia dynamics. We also show that SGEF (also known as ARHGEF26) is the exchange factor responsible for the activation of RhoG during invadopodia disassembly. When the expression of either RhoG or SGEF is silenced, invadopodia are more stable and have a longer lifetime than in control cells. Our findings also demonstrate that RhoG and SGEF modulate the phosphorylation of paxillin, which plays a key role during invadopodia disassembly. In summary, we have identified a novel signaling pathway involving SGEF, RhoG and paxillin phosphorylation, which functions in the regulation of invadopodia disassembly in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Podossomos/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Modelos Biológicos , Invasividade Neoplásica , Fosforilação , Proteínas rac1 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
20.
Biochem Biophys Res Commun ; 484(2): 255-261, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28115158

RESUMO

Morphological plasticity in response to environmental cues in migrating cancer cells requires F-actin cytoskeletal rearrangements. Conserved formin family proteins play critical roles in cell shape, tumor cell motility, invasion and metastasis, in part, through assembly of non-branched actin filaments. Diaphanous-related formin-2 (mDia2/Diaph3/Drf3/Dia) regulates mesenchymal-to-amoeboid morphological conversions and non-apoptotic blebbing in tumor cells by interacting with its inhibitor diaphanous-interacting protein (DIP), and disrupting cortical F-actin assembly and bundling. F-actin disruption is initiated by a CXCL12-dependent mechanism. Downstream CXCL12 signaling partners inducing mDia2-dependent amoeboid conversions remain enigmatic. We found in MDA-MB-231 tumor cells CXCL12 induces DIP and mDia2 interaction in blebs, and engages its receptor CXCR4 to induce RhoA-dependent blebbing. mDia2 and CXCR4 associate in blebs upon CXCL12 stimulation. Both CXCR4 and RhoA are required for CXCL12-induced blebbing. Neither CXCR7 nor other Rho GTPases that activate mDia2 are required for CXCL12-induced blebbing. The Rho Guanine Nucleotide Exchange Factor (GEF) Net1 is required for CXCL12-driven RhoA activation and subsequent blebbing. These results reveal CXCL12 signaling, through CXCR4, directs a Net1/RhoA/mDia-dependent signaling hub to drive cytoskeleton rearrangements to regulate morphological plasticity in tumor cells. These signaling hubs may be conserved during normal and cancer cells responding to chemotactic cues.


Assuntos
Proteínas de Transporte/metabolismo , Quimiocina CXCL12/metabolismo , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Forminas , Células HEK293 , Humanos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA