Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 11(4): 530-545, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36883368

RESUMO

One billion people worldwide get flu every year, including patients with non-small cell lung cancer (NSCLC). However, the impact of acute influenza A virus (IAV) infection on the composition of the tumor microenvironment (TME) and the clinical outcome of patients with NSCLC is largely unknown. We set out to understand how IAV load impacts cancer growth and modifies cellular and molecular players in the TME. Herein, we report that IAV can infect both tumor and immune cells, resulting in a long-term protumoral effect in tumor-bearing mice. Mechanistically, IAV impaired tumor-specific T-cell responses, led to the exhaustion of memory CD8+ T cells and induced PD-L1 expression on tumor cells. IAV infection modulated the transcriptomic profile of the TME, fine-tuning it toward immunosuppression, carcinogenesis, and lipid and drug metabolism. Consistent with these data, the transcriptional module induced by IAV infection in tumor cells in tumor-bearing mice was also found in human patients with lung adenocarcinoma and correlated with poor overall survival. In conclusion, we found that IAV infection worsened lung tumor progression by reprogramming the TME toward a more aggressive state.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vírus da Influenza A , Influenza Humana , Neoplasias Pulmonares , Infecções por Orthomyxoviridae , Humanos , Animais , Camundongos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Microambiente Tumoral , Linfócitos T CD8-Positivos , Pulmão , Infecções por Orthomyxoviridae/patologia
2.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955566

RESUMO

Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mortality, particularly in hospital patients undergoing ventilation and in individuals with cystic fibrosis. Although we and others have investigated mechanisms used by P.a to subvert innate immunity, relatively less is known about the potential strategies used by this bacterium to fight the adaptive immune system and, in particular, T cells. Here, using RAG KO (devoid of 'classical' αß and γδ TCR T lymphocytes) and double RAG γC KO mice (devoid of T, NK and ILC cells), we demonstrate that the lymphocytic compartment is important to combat P.a (PAO1 strain). Indeed, we show that PAO1 load was increased in double RAG γC KO mice. In addition, we show that PAO1 down-regulates IL-23 and IL-22 protein accumulation in the lungs of infected mice while up-regulating their RNA production, thereby pointing towards a specific post-transcriptional regulatory mechanism not affecting other inflammatory mediators. Finally, we demonstrate that an adenovirus-mediated over-expression of IL-1, IL-23 and IL-7 induced lung neutrophil and lymphocytic influx and rescued mice against P.a-induced lethality in all WT, RAG γC KO and RAG γC KO RAG-deficient mice, suggesting that this regimen might be of value in 'locally immunosuppressed' individuals such as cystic fibrosis patients.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Animais , Fibrose Cística/genética , Fibrose Cística/metabolismo , Interleucina-23/metabolismo , Interleucinas , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Interleucina 22
3.
Mol Ther ; 30(1): 355-369, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34371178

RESUMO

Pseudomonas aeruginosa (P.a) infections are a major public health issue in ventilator-associated pneumoniae, cystic fibrosis, and chronic obstructive pulmonary disease exacerbations. P.a is multidrug resistant, and there is an urgent need to develop new therapeutic approaches. Here, we evaluated the effect of direct pulmonary transplantation of gene-modified (elafin and interleukin [IL]-6) syngeneic macrophages in a mouse model of acute P.a infection. Wild-type (WT) or Elafin-transgenic (eTg) alveolar macrophages (AMs) or bone marrow-derived macrophages (BMDMs) were recovered from bronchoalveolar lavage or generated from WT or eTg mouse bone marrow. Cells were modified with adenovirus IL-6 (Ad-IL-6), characterized in vitro, and transferred by oropharyngeal instillation in the lungs of naive mice. The protective effect was assessed during P.a acute infection (survival studies, mechanistic studies of the inflammatory response). We show that a single bolus of genetically modified syngeneic AMs or BMDMs provided protection in our P.a-induced model. Mechanistically, Elafin-modified AMs had an IL-6-IL-10-IL-4R-IL-22-antimicrobial molecular signature that, in synergy with IL-6, enhanced epithelial cell proliferation and tissue repair in the alveolar unit. We believe that this innovative cell therapy strategy could be of value in acute bacterial infections in the lung.


Assuntos
Infecções por Pseudomonas , Animais , Elafina , Imunoterapia , Interleucina-6/genética , Pulmão/microbiologia , Macrófagos , Macrófagos Alveolares , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/terapia , Pseudomonas aeruginosa/genética
4.
Trends Cancer ; 7(7): 573-576, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33712391

RESUMO

Influenza virus infection leads to severe and complicated disease, particularly in patients with lung cancer. It alters the tumor microenvironment (TME), which may potentiate lung cancer progression and disrupt responses to antitumoral treatments. Consequently, influenza vaccination and antiviral treatments should be recommended to all patients with lung cancer.


Assuntos
Antivirais/uso terapêutico , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/terapia , Neoplasias Pulmonares/mortalidade , Progressão da Doença , Humanos , Influenza Humana/complicações , Influenza Humana/imunologia , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Oncologia/normas , Guias de Prática Clínica como Assunto , Microambiente Tumoral/imunologia , Vacinação/normas
5.
Front Immunol ; 11: 117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117268

RESUMO

Individuals with impaired immune responses, such as ventilated and cystic fibrosis patients are often infected with Pseudomonas aeruginosa (P.a) bacteria, and a co-infection with the Influenza virus (IAV) is often present. It has been known for many years that infection with IAV predisposes the host to secondary bacterial infections (such as Streptococcus pneumoniae or Staphylococcus aureus), and there is an abundance of mechanistic studies, including those studying the role of desensitization of TLR signaling, type I IFN- mediated impairment of neutrophil chemokines and antimicrobial production, attenuation of IL1ß production etc., showing this. However, little is known about the mechanistic events underlying the potential deleterious synergy between Influenza and P.a co-infections. We demonstrate here in vitro in epithelial cells and in vivo in three independent models (two involving mice given IAV +/- P.a, and one involving mice given IAV +/- IL-1ß) that IAV promotes secondary P.a-mediated lung disease or augmented IL-1ß-mediated inflammation. We show that IAV-P.a-mediated deleterious responses includes increased matrix metalloprotease (MMP) activity, and MMP-9 in particular, and that the use of the MMP inhibitor improves lung resilience. Furthermore, we show that IAV post-transcriptionally inhibits the antimicrobial/anti-protease molecule elafin/trappin-2, which we have shown previously to be anti-inflammatory and to protect the host against maladaptive neutrophilic inflammation in P.a infections. Our work highlights the capacity of IAV to promote further P.a-mediated lung damage, not necessarily through its interference with host resistance to the bacterium, but by down-regulating tissue resilience to lung inflammation instead. Our study therefore suggests that restoring tissue resilience in clinical settings where IAV/P.a co-exists could prove a fruitful strategy.


Assuntos
Coinfecção/imunologia , Elafina/metabolismo , Vírus da Influenza A/imunologia , Metaloproteinase 9 da Matriz/metabolismo , Pseudomonas aeruginosa/imunologia , Animais , Linhagem Celular , Coinfecção/induzido quimicamente , Coinfecção/metabolismo , Fibrose Cística/imunologia , Citocinas/metabolismo , Suscetibilidade a Doenças/metabolismo , Células Epiteliais/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Pneumonia/metabolismo , Infecções Estafilocócicas/imunologia
6.
ACS Nano ; 12(2): 1188-1202, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29357226

RESUMO

Silver nanoparticles (AgNPs) are microbicidal agents which could be potentially used as an alternative to antivirals to treat human infectious diseases, especially influenza virus infections where antivirals have generally proven unsuccessful. However, concerns about the use of AgNPs on humans arise from their potential toxicity, although mechanisms are not well-understood. We show here, in the context of an influenza virus infection of lung epithelial cells, that AgNPs down-regulated influenza induced CCL-5 and -IFN-ß release (two cytokines important in antiviral immunity) through RIG-I inhibition, while enhancing IL-8 production, a cytokine important for mobilizing host antibacterial responses. AgNPs activity was independent of coating and was not observed with gold nanoparticles. Down-stream analysis indicated that AgNPs disorganized the mitochondrial network and prevented the antiviral IRF-7 transcription factor influx into the nucleus. Importantly, we showed that the modulation of RIG-I-IRF-7 pathway was concomitant with inhibition of either classical or alternative autophagy (ATG-5- and Rab-9 dependent, respectively), depending on the epithelial cell type used. Altogether, this demonstration of a AgNPs-mediated functional dichotomy (down-regulation of IFN-dependent antiviral responses and up-regulation of IL-8-dependent antibacterial responses) may have practical implications for their use in the clinic.


Assuntos
Antivirais/farmacologia , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/química , Mitocôndrias/efeitos dos fármacos , Orthomyxoviridae/efeitos dos fármacos , Prata/farmacologia , Tretinoína/farmacologia , Animais , Antivirais/química , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Cães , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Pulmão/metabolismo , Pulmão/virologia , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/virologia , Testes de Sensibilidade Microbiana , Mitocôndrias/metabolismo , Prata/química , Tretinoína/química
7.
Thorax ; 73(1): 49-61, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28790180

RESUMO

BACKGROUND: Pseudomonas aeruginosa lung infections are a huge problem in ventilator-associated pneumonia, cystic fibrosis (CF) and in chronic obstructive pulmonary disease (COPD) exacerbations. This bacterium secretes virulence factors that may subvert host innate immunity. OBJECTIVE: We evaluated the effect of P. aeruginosa elastase LasB, an important virulence factor secreted by the type II secretion system, on ion transport, innate immune responses and epithelial repair, both in vitro and in vivo. METHODS: Wild-type (WT) or cystic fibrosis transmembrane conductance regulator (CFTR)-mutated epithelial cells (cell lines and primary cells from patients) were treated with WT or ΔLasB pseudomonas aeruginosa O1 (PAO1) secretomes. The effect of LasB and PAO1 infection was also assessed in vivo in murine models. RESULTS: We showed that LasB was the most abundant protein in WT PAO1 secretomes and that it decreased epithelial CFTR expression and activity. In airway epithelial cell lines and primary bronchial epithelial cells, LasB degraded the immune mediators interleukin (IL)-6 and trappin-2, an important epithelial-derived antimicrobial molecule. We further showed that an IL-6/STAT3 signalling pathway was downregulated by LasB, resulting in inhibition of epithelial cell repair. In mice, intranasally instillated LasB induced significant weight loss, inflammation, injury and death. By contrast, we showed that overexpression of IL-6 and trappin-2 protected mice against WT-PAO1-induced death, by upregulating IL-17/IL-22 antimicrobial and repair pathways. CONCLUSIONS: Our data demonstrate that PAO1 LasB is a major P. aeruginosa secreted factor that modulates ion transport, immune response and tissue repair. Targeting this virulence factor or upregulating protective factors such as IL-6 or antimicrobial molecules such as trappin-2 could be beneficial in P. aeruginosa-infected individuals.


Assuntos
Proteínas de Bactérias , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Fibrose Cística/imunologia , Células Epiteliais/fisiologia , Imunidade Inata/fisiologia , Interleucina-6/fisiologia , Metaloendopeptidases , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
Sci Rep ; 7: 42243, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181563

RESUMO

According to the WHO, and despite reduction in mortality rates, there were an estimated 438 000 malaria deaths in 2015. Therefore new antimalarials capable of limiting organ damage are still required. We show that systemic and lung adenovirus (Ad)-mediated over-expression of trappin-2 (T-2) an antibacterial molecule with anti-inflammatory activity, increased mice survival following infection with the cerebral malaria-inducing Plasmodium berghei ANKA (PbANKA) strain. Systemically, T-2 reduced PbANKA sequestration in spleen, lung, liver and brain, associated with a decrease in pro-inflammatory cytokines (eg TNF-α in spleen and lung) and an increase in IL-10 production in the lung. Similarly, local lung instillation of Ad-T-2 resulted in a reduced organ parasite sequestration and a shift towards an anti-inflammatory/repair response, potentially implicating monocytes in the protective phenotype. Relatedly, we demonstrated in vitro that human monocytes incubated with Plasmodium falciparum-infected red blood cells (Pf-iRBCs) and IgGs from hyper-immune African human sera produced T-2 and that the latter colocalized with merozoites and inhibited Pf multiplication. This array of data argues for the first time for the potential therapeutic usefulness of this host defense peptide in human malaria patients, with the aim to limit acute lung injury and respiratory distress syndrom often observed during malaria episodes.


Assuntos
Anti-Infecciosos/uso terapêutico , Antiparasitários/uso terapêutico , Elafina/uso terapêutico , Malária Cerebral/tratamento farmacológico , Malária Cerebral/parasitologia , Plasmodium berghei/efeitos dos fármacos , Administração Intranasal , Animais , Anti-Infecciosos/farmacologia , Antiparasitários/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Elafina/farmacologia , Eritrócitos/parasitologia , Feminino , Humanos , Malária Cerebral/sangue , Merozoítos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Parasitemia/patologia , Plasmodium falciparum/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
Environ Sci Pollut Res Int ; 20(5): 2761-70, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23288678

RESUMO

Because of an increasing exposure to environmental and occupational nanoparticles (NPs), the potential risk of these materials for human health should be better assessed. Since one of the main routes of entry of NPs is via the lungs, it is of paramount importance to further characterize their impact on the respiratory system. Here, we have studied the uptake of fluorescently labeled SiO2 NPs (50 and 100 nm) by epithelial cells (NCI-H292) and alveolar macrophages (MHS) in the presence or absence of pulmonary surfactant. The quantification of NP uptake was performed by measuring cell-associated fluorescence using flow cytometry and spectrometric techniques in order to identify the most suitable methodology. Internalization was shown to be time and dose dependent, and differences in terms of uptake were noted between epithelial cells and macrophages. In the light of our observations, we conclude that flow cytometry is a more reliable technique for the study of NP internalization, and importantly, that the hydrophobic fraction of lung surfactant is critical for downregulating NP uptake in both cell types.


Assuntos
Produtos Biológicos/farmacologia , Monitoramento Ambiental/métodos , Células Epiteliais/metabolismo , Macrófagos Alveolares/metabolismo , Nanopartículas/administração & dosagem , Tamanho da Partícula , Fosfolipídeos/farmacologia , Surfactantes Pulmonares/farmacologia , Animais , Linhagem Celular , Citometria de Fluxo/métodos , Humanos , Pulmão/metabolismo , Camundongos , Microscopia Confocal , Dióxido de Silício/metabolismo , Espectrofotometria/métodos
10.
PLoS One ; 7(7): e39888, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768318

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen involved in nosocomial infections. Flagellin is a P. aeruginosa virulence factor involved in host response to this pathogen. We examined the role of flagellin in P. aeruginosa-induced mucus secretion. Using a mouse model of pulmonary infection we showed that PAK, a wild type strain of P. aeruginosa, induced airway mucus secretion and mucin muc5ac expression at higher levels than its flagellin-deficient mutant (ΔFliC). PAK induced expression of MUC5AC and MUC2 in both human airway epithelial NCI-H292 cell line and in primary epithelial cells. In contrast, ΔFliC infection had lower to no effect on MUC5AC and MUC2 expressions. A purified P. aeruginosa flagellin induced MUC5AC expression in parallel to IL-8 secretion in NCI-H292 cells. Accordingly, ΔFliC mutant stimulated IL-8 secretion at significantly lower levels compared to PAK. Incubation of NCI-H292 cells with exogenous IL-8 induced MUC5AC expression and pre-incubation of these cells with an anti-IL-8 antibody abrogated flagellin-mediated MUC5AC expression. Silencing of TLR5 and Naip, siRNA inhibited both flagellin-induced MUC5AC expression and IL-8 secretion. Finally, inhibition of ERK abolished the expression of both PAK- and flagellin-induced MUC5AC. We conclude that: (i) flagellin is crucial in P. aeruginosa-induced mucus hyper-secretion through TLR5 and Naip pathways; (ii) this process is mediated by ERK and amplified by IL-8. Our findings help understand the mechanisms involved in mucus secretion during pulmonary infectious disease induced by P. aeruginosa, such as in cystic fibrosis.


Assuntos
Flagelina/metabolismo , Muco/metabolismo , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Mucosa Respiratória/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Feminino , Flagelina/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Interleucina-8/biossíntese , Interleucina-8/imunologia , Camundongos , Mucina-5AC/biossíntese , Mucina-5AC/imunologia , Mucina-2/biossíntese , Mucina-2/imunologia , Muco/imunologia , Proteína Inibidora de Apoptose Neuronal/imunologia , Proteína Inibidora de Apoptose Neuronal/metabolismo , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/patogenicidade , Mucosa Respiratória/imunologia , Mucosa Respiratória/microbiologia , Receptor 5 Toll-Like/imunologia , Receptor 5 Toll-Like/metabolismo
11.
Int J Biochem Cell Biol ; 44(8): 1377-80, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22634606

RESUMO

Trappin-2/Elafin is a potent serine protease inhibitor which prevents excessive damage under inflammatory status. This "alarm-antiprotease" is locally expressed by epithelial cells and immune cells such as macrophages and γδ T cells. It has also been proven to modulate a wide range of parameters that are critical for the inflammation process like modulating the NFκB pathway, cytokine secretion and cell recruitment. In addition, Trappin-2/Elafin was shown to possess anti-microbial properties against different classes of pathogens including viruses, fungi and bacteria. Studies also linked Trappin-2/Elafin to either susceptibility or protection against inflammatory disease and infections, even though the mechanisms remains poorly understood. This review will discuss some of the pleiotropic effects displayed by Trappin-2/Elafin, and the properties that could be used to prevent infection or to protect against inflammation.


Assuntos
Elafina/imunologia , Imunidade/imunologia , Inflamação/imunologia , Infecções Bacterianas/imunologia , Elafina/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Modelos Imunológicos , Micoses/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Viroses/imunologia
12.
Eur Respir J ; 40(3): 714-23, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22441738

RESUMO

Eicosanoids are metabolites of arachidonic acid produced by cyclooxygenases (COXs) or lipoxygenases (LOXs). They mediate inflammation and mucus secretion in chronic pulmonary inflammatory diseases. The gel-forming mucin MUC5AC is over-expressed in the airways of patients with these diseases. MUC5AC expression is mediated by an extracellular signal-regulated kinase (ERK)/Sp1 dependent mechanism. Our aim was to study the role of eicosanoids and their signalling pathways in MUC5AC expression. Inhibitors of 12-LOX, but not those of COX, 5-LOX or 15-LOX, reduce MUC5AC expression induced by phorbol myristate acetate (PMA) in the bronchial epithelial cell line NCI-H292. These inhibitors also abrogate the production of whole mucus by cell monolayers. Two forms of 12-LOX (R and S) exist in mammals. Using siRNAs we show that 12R-LOX but not 12S-LOX is involved in MUC5AC expression induced by PMA, lipopolysaccharide or transforming growth factor-α. 12R-LOX also participates in MUC2 and MUC5B expression, although to a lesser extent than for MUC5AC. Contrarily, 12R-LOX silencing does not modify interleukin-8 production. 12-LOX inhibitors reduce ERK activation and Sp1 translocation induced by PMA. Moreover, the 12R-LOX product 12(R)-hydroxyeicosatetraenoic acid, induces MUC5AC expression, ERK activation and Sp1 translocation. 12R-LOX is involved in MUC5AC expression. This occurs via ERK- and Sp1-signalling pathways.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Mucina-5AC/biossíntese , Mucosa Respiratória/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Araquidonato 12-Lipoxigenase/genética , Carcinógenos/farmacologia , Linhagem Celular , Inibidores de Ciclo-Oxigenase/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Inativação Gênica , Humanos , Interleucina-8/biossíntese , Lipopolissacarídeos/farmacologia , Inibidores de Lipoxigenase/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mucina-2/biossíntese , Mucina-5B/biossíntese , Muco/metabolismo , Transporte Proteico , Mucosa Respiratória/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fator de Crescimento Transformador alfa/farmacologia
13.
Am J Respir Cell Mol Biol ; 47(2): 149-57, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22383584

RESUMO

Mucins, the main glycoproteins present within mucus, modulate the rheologic properties of airways and participate in lung defense. They are thought to be able to trap and eliminate microorganisms from the lung. Among the mucins secreted in the lung, MUC5AC is the most prominent factor secreted by surface epithelial cells. Although much is known about the signaling pathways involved in the regulation of MUC5AC by host factors such as cytokines or proteases, less is known about the pathways triggered by microorganisms and, specifically, by influenza A virus (IAV). We therefore set up experiments to dissect the molecular mechanisms responsible for the potential modulation of MUC5AC by IAV. Using epithelial cells, C57/Bl6 mice, and IAV strains, we measured MUC5AC expression at the RNA and protein levels, specificity protein 1 (Sp1) activation, and protease activity. Intermediate molecular partners were confirmed using pharmacological inhibitors, blocking antibodies, and small interfering (si)RNAs. We showed in vitro and in vivo that IAV up-regulates epithelial cell-derived MUC5AC and Muc5ac expression in mice, both at transcriptional (through the induction of Sp1) and translational levels. In addition, we determined that this induction was dependent on a protease-epithelial growth factor receptor-extracellular regulated kinase-Sp1 signaling cascade, involving in particular the human airway trypsin. Our data point to MUC5AC as a potential modulatory mechanism by which the lung epithelia respond to IAV infection, and we dissect, for the first time to the best of our knowledge, the molecular partners involved. Future experiments using MUC5AC-targeted strategies should help further unravel the pathophysiological consequences of IAV-induced MUC5AC expression for lung homeostasis.


Assuntos
Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Vírus da Influenza A/metabolismo , Pulmão/metabolismo , Mucina-5AC/biossíntese , Peptídeo Hidrolases/genética , Fator de Transcrição Sp1/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Influenza Humana/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucina-5AC/genética , Mucina-5AC/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Fator de Transcrição Sp1/genética , Tripsina/genética , Tripsina/metabolismo , Regulação para Cima , Replicação Viral/genética
14.
PLoS One ; 4(10): e7259, 2009 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-19806220

RESUMO

BACKGROUND: The human lung is exposed to a large number of airborne pathogens as a result of the daily inhalation of 10,000 liters of air. Innate immunity is thus essential to defend the lungs against these pathogens. This defense is mediated in part through the recognition of specific microbial ligands by Toll-like receptors (TLR) of which there are at least 10 in humans. Pseudomonas aeruginosa is the main pathogen that infects the lungs of cystic fibrosis patients. Based on whole animal experiments, using TLR knockout mice, the control of this bacterium is believed to occur by the recognition of LPS and flagellin by TLRs 2,4 and 5, respectively. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we investigated in vitro the role of these same TLR and ligands, in alveolar macrophage (AM) and epithelial cell (EC) activation. Cellular responses to P. aeruginosa was evaluated by measuring KC, TNF-alpha, IL-6 and G-CSF secretion, four different markers of the innate immune response. AM and EC from WT and TLR2, 4, 5 and MyD88 knockout mice for were stimulated with the wild-type P. aeruginosa or with a mutant devoid of flagellin production. CONCLUSIONS/SIGNIFICANCE: The results clearly demonstrate that only two ligand/receptor pairs are necessary for the induction of KC, TNF-alpha, and IL-6 synthesis by P. aeruginosa-activated cells, i.e. TLR2,4/LPS and TLR5/flagellin. Either ligand/receptor pair is sufficient to sense the bacterium and to trigger cell activation, and when both are missing lung EC and AM are unable to produce such a response as were cells from MyD88(-/-) mice.


Assuntos
Quimiocina CXCL1/metabolismo , Células Epiteliais/citologia , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica , Interleucina-6/biossíntese , Lipopolissacarídeos/metabolismo , Macrófagos Alveolares/metabolismo , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 5 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo
15.
J Immunol ; 183(2): 1446-55, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19553541

RESUMO

Bacterial LPS triggers monocytes and macrophages to produce several inflammatory cytokines and mediators. However, once exposed to LPS, they become hyporesponsive to a subsequent endotoxin challenge. This phenomenon is defined as LPS desensitization or tolerance. Previous studies have identified some components of the biochemical pathways involved in negative modulation of LPS responses. In particular, it has been shown that the IL-1R-related protein ST2 could be implicated in LPS tolerance. The natural ligand of ST2 was recently identified as IL-33, a new member of the IL-1 family. In this study, we investigated whether IL-33 triggering of ST2 was able to induce LPS desensitization of mouse macrophages. We found that IL-33 actually enhances the LPS response of macrophages and does not induce LPS desensitization. We demonstrate that this IL-33 enhancing effect of LPS response is mediated by the ST2 receptor because it is not found in ST2 knockout mice. The biochemical consequences of IL-33 pretreatment of mouse macrophages were investigated. Our results show that IL-33 increases the expression of the LPS receptor components MD2 (myeloid differentiation protein 2) and TLR-4, the soluble form of CD14 and the MyD88 adaptor molecule. In addition, IL-33 pretreatment of macrophages enhances the cytokine response to TLR-2 but not to TLR-3 ligands. Thus, IL-33 treatment preferentially affects the MyD88-dependent pathway activated by the TLR.


Assuntos
Citocinas/biossíntese , Interleucinas/fisiologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Animais , Linhagem Celular , Tolerância Imunológica , Inflamação/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Receptores de Interleucina/imunologia , Receptores Toll-Like/metabolismo
16.
Innate Immun ; 15(1): 53-62, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19201825

RESUMO

Surfactant protein C (SP-C) consists of a hydrophobic alpha-helix inserted in pulmonary surfactant membranes, and a more polar N-terminal palmitoylated segment exposed to the aqueous phase. Previously, we showed that SP-C inserted in lipid vesicles interacts with bacterial lipopolysaccharide (LPS) and reduces LPS-elicited responses. As the N-terminal segment of SP-C was the most likely region responsible for these effects, a set of synthetic analogs of this stretch (SPC((1-13)) ) were studied. Binding studies showed that SPC((1-13)) binds LPS to the same extent as porcine SP-C under lipid-free conditions. In the absence of serum, both, palmitoylated and non-palmitoylated analogs enhanced the binding of tritiated LPS to macrophages as well as the LPS-induced production of TNF-alpha by these cells. These effects were reversed in the presence of serum; the analogs reduced the production of TNF-alpha in LPS-stimulated macrophages, probably by interfering with the formation of LPS/CD14/LBP complexes as suggested by analysis of the fluorescence emitted by a FITC derivative of Re-LPS. Our data indicate that water-soluble analogs of the N-terminal segment of SP-C can reduce LPS effects in the presence of serum, and thus might help in the design of new derivatives to fight endotoxic shock and pro-inflammatory events.


Assuntos
Lipopolissacarídeos/antagonistas & inibidores , Macrófagos Peritoneais/efeitos dos fármacos , Peptídeos/farmacologia , Fator de Necrose Tumoral alfa/biossíntese , Sequência de Aminoácidos , Animais , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intercelular , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Lipossomos , Macrófagos Peritoneais/imunologia , Camundongos , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/imunologia , Proteína C Associada a Surfactante Pulmonar , Surfactantes Pulmonares , Suínos , Fator de Necrose Tumoral alfa/agonistas
17.
Am J Physiol Lung Cell Mol Physiol ; 295(4): L708-17, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18689605

RESUMO

Bacterial LPS is a potent proinflammatory molecule. In the lungs, LPS induces alterations in surfactant pool sizes and phospholipid (PL) contents, although direct actions of LPS on the alveolar type II cells (AT II) are not yet clear. For this reason, we studied short- and long-term effects of LPS on basal and agonist-stimulated secretory responses of rat AT II by using Ca(2+) microfluorimetry, a microtiter plate-based exocytosis assay, by quantitating PL and (3)H-labeled choline released into cell supernatants and by using quantitative PCR and Western blot analysis. Long term, but not short term, exposures to LPS led to prolonged ATP-induced Ca(2+) signals and an increased rate in vesicle fusions with an augmented release of surfactant PL. Most notably, the stimulatory effect of LPS was ATP-dependent and may be mediated by the upregulation of the purinergic receptor subtype P2Y(2). Western blot analysis confirmed higher levels of P2Y(2), and suramin, a P2Y receptor antagonist, was more effective in LPS-treated cells. From these observations, we conclude that LPS, probably via Toll-like receptor-4, induces a time-dependent increase in P2Y(2) receptors, which, by yet unknown mechanisms, leads to prolonged agonist-induced Ca(2+) responses that trigger a higher activity in vesicle fusion and secretion. We further conclude that chronic exposure to endotoxin sensitizes AT II to increase the extracellular surfactant pool, which aids in the pulmonary host defense mechanisms.


Assuntos
Exocitose/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Alvéolos Pulmonares/fisiologia , Surfactantes Pulmonares/metabolismo , Receptores Purinérgicos P2/genética , Actinas/genética , Trifosfato de Adenosina/farmacologia , Animais , Primers do DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Cinética , Masculino , Camundongos , Reação em Cadeia da Polimerase , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y2
18.
Biol Reprod ; 79(2): 348-55, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18463356

RESUMO

The present study investigated the ability of surfactant associated protein A1 (SFTPA1), a major component of lung surfactant, to bind and serve as a signal in human cultured myometrial cells. By using ligand blot analysis with 125I-SFTPA1, we consistently identified two myometrial SFTPA1 interacting proteins (55 and 200 kDa). We found that the SFTPA1 immunoreactive protein was present in myometrial cells. We also showed by indirect immunofluorescence the nuclear translocation of RELA (also known as NFkappaB p65 subunit) after activation of myometrial cells by SFTPA1. Neutralization of TLR4 did not reverse this effect. Moreover, SFTPA1 rapidly activated mitogen-activated protein kinase 1/3 (MAPK1/3) and protein kinase C zeta (PRKCZ). The prolonged treatment of myometrial cells with SFTPA1 upregulated PTGS2 (COX2) protein levels. We next evaluated whether SFTPA1 affected the actin dynamic. Stimulation of myometrial cells with SFTPA1 markedly enhanced the intensity of the filamentous-actin pool stained with fluorescein isothiocyanate-phalloidin. Inhibition of PRKC or Rho-associated, coiled-coil containing protein kinase 1 (ROCK) reduced the SFTPA1-mediated stress fiber formation. Our data support the hypothesis that human myometrial cells express functional SFTPA1 binding sites and respond to SFTPA1 to initiate activation of signaling events related to human parturition.


Assuntos
Miócitos de Músculo Liso/metabolismo , Miométrio/metabolismo , Proteína A Associada a Surfactante Pulmonar/fisiologia , Útero/metabolismo , Citoesqueleto de Actina/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Feminino , Humanos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Parto/metabolismo , Parto/fisiologia , Fosforilação , Gravidez , Ligação Proteica , Proteína Quinase C/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição RelA/metabolismo
19.
J Biol Chem ; 280(52): 43073-8, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-16249180

RESUMO

The lethal disease anthrax is propagated by spores of Bacillus anthracis, which can penetrate into the mammalian host by inhalation, causing a rapid progression of the disease and a mostly fatal outcome. We have solved the three-dimensional structure of the major surface protein BclA on B. anthracis spores. Surprisingly, the structure resembles C1q, the first component of complement, despite there being no sequence homology. Although most assays for C1q-like activity, including binding to C1q receptors, suggest that BclA does not mimic C1q, we show that BclA, as well as C1q, interacts with components of the lung alveolar surfactant layer. Thus, to better recognize and invade its hosts, this pathogenic soil bacterium may have evolved a surface protein whose structure is strikingly close to a mammalian protein.


Assuntos
Bacillus anthracis/metabolismo , Glicoproteínas de Membrana/química , Animais , Dicroísmo Circular , Complemento C1q/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Propriedades de Superfície , Tensoativos/química , Temperatura , Fator de Necrose Tumoral alfa/química , Raios Ultravioleta
20.
Biochem J ; 391(Pt 1): 115-24, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15932345

RESUMO

SP-A (surfactant protein A) is a lipid-binding collectin primarily involved in innate lung immunity. SP-A interacts with the bacterial rough LPS (lipopolysaccharide) Re-LPS (Re595 mutant of LPS from Salmonella minnesota), but not with smooth LPS. In the present study, we first examined the characteristics of the interaction of human SP-A with Re-LPS. Fluorescence intensity and anisotropy measurements of FITC-labelled Re-LPS in the presence and absence of SP-A indicated that SP-A bound to Re-LPS in solution in a Ca2+-independent manner, with a dissociation constant of 2.8x10(-8) M. In the presence of calcium, a high-mobility complex of SP-A and [3H]Rb-LPS (Rb mutant of LPS from Escherichia coli strain LCD 25) micelles was formed, as detected by sucrose density gradients. Re-LPS aggregation induced by SP-A was further characterized by light scattering. On the other hand, human SP-A inhibited TNF-alpha (tumour necrosis factor-alpha) secretion by human macrophage-like U937 cells stimulated with either Re-LPS or smooth LPS. We further examined the effects of human SP-A on the binding of Re-LPS to LBP (LPS-binding protein) and CD14. SP-A decreased the binding of Re-LPS to CD14, but not to LBP, as detected by cross-linking experiments with 125I-ASD-Re-LPS [125I-labelled sulphosuccinimidyl-2-(p-azidosalicylamido)-1,3-dithiopropionate derivative of Re-LPS] and fluorescence analysis with FITC-Re-LPS. When SP-A, LBP and CD14 were incubated together, SP-A reduced the ability of LBP to transfer 125I-ASD-Re-LPS to CD14. These SP-A effects were not due to the ability of SP-A to aggregate Re-LPS in the presence of calcium, since they were observed in both the absence and the presence of calcium. These studies suggest that SP-A could contribute to modulate Re-LPS responses by altering the competence of the LBP-CD14 receptor complex.


Assuntos
Proteínas de Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Cálcio/metabolismo , Escherichia coli , Humanos , Micelas , Mutação , Ligação Proteica/efeitos dos fármacos , Proteína A Associada a Surfactante Pulmonar/farmacologia , Salmonella/metabolismo , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA