Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 4(9): e2128534, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586364

RESUMO

Importance: Currently, there are no presymptomatic screening methods to identify individuals infected with a respiratory virus to prevent disease spread and to predict their trajectory for resource allocation. Objective: To evaluate the feasibility of using noninvasive, wrist-worn wearable biometric monitoring sensors to detect presymptomatic viral infection after exposure and predict infection severity in patients exposed to H1N1 influenza or human rhinovirus. Design, Setting, and Participants: The cohort H1N1 viral challenge study was conducted during 2018; data were collected from September 11, 2017, to May 4, 2018. The cohort rhinovirus challenge study was conducted during 2015; data were collected from September 14 to 21, 2015. A total of 39 adult participants were recruited for the H1N1 challenge study, and 24 adult participants were recruited for the rhinovirus challenge study. Exclusion criteria for both challenges included chronic respiratory illness and high levels of serum antibodies. Participants in the H1N1 challenge study were isolated in a clinic for a minimum of 8 days after inoculation. The rhinovirus challenge took place on a college campus, and participants were not isolated. Exposures: Participants in the H1N1 challenge study were inoculated via intranasal drops of diluted influenza A/California/03/09 (H1N1) virus with a mean count of 106 using the median tissue culture infectious dose (TCID50) assay. Participants in the rhinovirus challenge study were inoculated via intranasal drops of diluted human rhinovirus strain type 16 with a count of 100 using the TCID50 assay. Main Outcomes and Measures: The primary outcome measures included cross-validated performance metrics of random forest models to screen for presymptomatic infection and predict infection severity, including accuracy, precision, sensitivity, specificity, F1 score, and area under the receiver operating characteristic curve (AUC). Results: A total of 31 participants with H1N1 (24 men [77.4%]; mean [SD] age, 34.7 [12.3] years) and 18 participants with rhinovirus (11 men [61.1%]; mean [SD] age, 21.7 [3.1] years) were included in the analysis after data preprocessing. Separate H1N1 and rhinovirus detection models, using only data on wearble devices as input, were able to distinguish between infection and noninfection with accuracies of up to 92% for H1N1 (90% precision, 90% sensitivity, 93% specificity, and 90% F1 score, 0.85 [95% CI, 0.70-1.00] AUC) and 88% for rhinovirus (100% precision, 78% sensitivity, 100% specificity, 88% F1 score, and 0.96 [95% CI, 0.85-1.00] AUC). The infection severity prediction model was able to distinguish between mild and moderate infection 24 hours prior to symptom onset with an accuracy of 90% for H1N1 (88% precision, 88% sensitivity, 92% specificity, 88% F1 score, and 0.88 [95% CI, 0.72-1.00] AUC) and 89% for rhinovirus (100% precision, 75% sensitivity, 100% specificity, 86% F1 score, and 0.95 [95% CI, 0.79-1.00] AUC). Conclusions and Relevance: This cohort study suggests that the use of a noninvasive, wrist-worn wearable device to predict an individual's response to viral exposure prior to symptoms is feasible. Harnessing this technology would support early interventions to limit presymptomatic spread of viral respiratory infections, which is timely in the era of COVID-19.


Assuntos
Biometria/métodos , Resfriado Comum/diagnóstico , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/diagnóstico , Rhinovirus , Índice de Gravidade de Doença , Dispositivos Eletrônicos Vestíveis , Adulto , Área Sob a Curva , Bioensaio , Biometria/instrumentação , Estudos de Coortes , Resfriado Comum/virologia , Diagnóstico Precoce , Estudos de Viabilidade , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Influenza Humana/virologia , Masculino , Programas de Rastreamento , Modelos Biológicos , Rhinovirus/crescimento & desenvolvimento , Sensibilidade e Especificidade , Eliminação de Partículas Virais , Adulto Jovem
2.
Am J Respir Crit Care Med ; 204(7): 826-841, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34256007

RESUMO

Rationale: Suboptimal vaccine immunogenicity and antigenic mismatch, compounded by poor uptake, means that influenza remains a major global disease. T cells recognizing peptides derived from conserved viral proteins could enhance vaccine-induced cross-strain protection. Objectives: To investigate the kinetics, phenotypes, and function of influenza virus-specific CD8+ resident memory T (Trm) cells in the lower airway and infer the molecular pathways associated with their response to infection in vivo. Methods: Healthy volunteers, aged 18-55, were inoculated intranasally with influenza A/California/4/09(H1N1). Blood, upper airway, and (in a subgroup) lower airway samples were obtained throughout infection. Symptoms were assessed by using self-reported diaries, and the nasal viral load was assessed by using quantitative PCR. T-cell responses were analyzed by using a three-color FluoroSpot assay, flow cytometry with MHC I-peptide tetramers, and RNA sequencing, with candidate markers being confirmed by using the immunohistochemistry results for endobronchial biopsy specimens. Measurements and Main Results: After challenge, 57% of participants became infected. Preexisting influenza-specific CD8+ T cells in blood correlated strongly with a reduced viral load, which peaked at Day 3. Influenza-specific CD8+ T cells in BAL fluid were highly enriched and predominantly expressed the Trm markers CD69 and CD103. Comparison between preinfection CD8+ T cells in BAL fluid and blood by using RNA sequencing revealed 3,928 differentially expressed genes, including all major Trm-cell markers. However, gene set enrichment analysis of BAL-fluid CD8+ T cells showed primarily innate cell-related pathways and, during infection, included upregulation of innate chemokines (Cxcl1, Cxcl10, and Cxcl16) that were also expressed by CD8+ cells in bronchial tissues. Conclusions: CD8+ Trm cells in the human lung display innate-like gene and protein expression that demonstrates blurred divisions between innate and adaptive immunity. Clinical study registered with www.clinicaltrials.gov (NCT02755948).


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Inata/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Imunidade Adaptativa/genética , Adolescente , Adulto , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/virologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocinas/metabolismo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Influenza Humana/genética , Influenza Humana/virologia , Cadeias alfa de Integrinas/genética , Cadeias alfa de Integrinas/metabolismo , Cinética , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Sistema Respiratório/imunologia , Sistema Respiratório/virologia , Carga Viral , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA